:; lightbits

Redefining HA for Kubernetes:
Lightning-Fast Pod Failover with
Lightbits RWX

Implementation Guide for HA Kubernetes in Active/Suspend mode

January 2026

Abstract

This white paper details a robust, scalable architecture that leverages the ReadWriteMany (RWX)
capabilities of the Lightbits disaggregated, software-defined storage platform to establish a
resilient Active/Passive High Availability (HA) framework for Kubernetes. By utilizing Lightbits’
native support for clustered NVMe® over TCP (NVMe/TCP) storage, this solution enables
seamless volume failover and persistent data access across multiple Kubernetes nodes. The
integration focuses on eliminating single points of failure at the storage layer, ensuring that
mission-critical stateful applications can automatically recover on standby nodes without data loss
or manual intervention. The paper outlines the implementation of Lightbits RWX volumes, the
configuration of Kubernetes pod anti-affinity rules for HA orchestration, and the best practices for
achieving rapid failover recovery times. This combined solution demonstrates how to achieve
enterprise-grade reliability and performance for containerized workloads by leveraging Lightbits'
shared-storage efficiency within a dynamically orchestrated Kubernetes environment.

© 2026 Lightbits Labs

;: lightbits

Table of Contents
PR 1 o T [T 1 o TR 3
1.1, Architectural OVEIVIEW.........ooo i 3
1.2. Key Technical CoOmMPONENTS.cccoiiiiiiiii e s e s e e s esseeeseeeees 4
1.2.1. LiIghtbits CSI DIV ... 4
1.2.2. ReadWriteMany (RWX) ACCESS MOUE...........ueiiiieiiiiiiiiiiiee e 4
1.2.3. Persistent Volume Claim (PVC).......cooiiiiiiiieiieeee e 4
1.3. Implementation WOrkflow..............oooi e 4
Benefits of this APPrOACH...........uuiiiiiiiiiie e 5
2. Environment Initialization and Container Orchestration.............cccccoviiiiiiiiiie e 5
2.1. Container Image CONSIIUCTION.coiuiiii e 5
2.2. Image Distribution WOIKFIOW...........eiiiiiiiee e 6
2.3.Verification of Node ReadiNeSs............uuuuuuuiimiiiiiiiiiiiiiiiiiiiiiiiieveeeeeeeeeeee e eeee e eeeeeeeeeeeeeeeeees 7
3. Kubernetes High Availability Configuration.............cccooooii . 7
3.1. Role-Based Access Control (RBAC) and Leader Election.............cccccooiiiiiiiiiiiiiiiiinnnnnnns 7
3.2. Storage Definition (Persistent Volume Claim)............ooouiiiiiiiiiiiii e 8
3.3. Workload Orchestration (Worker 1 & WOrKer 2)........coooiiiiiiiiiiiiieeeeeeeeeieeeeeee e 9
4. Deployment and Failover Validation..............oo e 13
4.1. Provisioning the Pods and RWX Storage.........ccccoovviiiiiii, 14
4.2. Testing Failover and Data Integrity.........ccoorviiiii e, 16
Step 1: Data Creation on Active NOGE............iiiiiiiiiiiiiiieeeeeeeeeeeee e 16
Step 2: Executing the FailOVer...........oooi e 17
Step 3: Verifying Data on New Leader ... 17
Step 4: Failback and Consistency CheCK............uuuviiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeee e 18
S T O o1 011 o o SRR 18
AbOoUt LIghtDits LabS. ...t 19

© 2026 Lightbits Labs

& y lightbits

1.Introduction

This white paper provides a comprehensive overview and technical guidelines for implementing
a High Availability (HA) Active/Passive environment within Kubernetes. By leveraging the
ReadWriteMany (RWX) capabilities of the Lightbits Cloud-Native Storage Interface (CSl),
organizations can achieve seamless failover with zero downtime from a storage connectivity
perspective.

1.1. Architectural Overview

The solution architecture consists of a standard Kubernetes cluster configuration optimized for

storage resilience:
e Control Plane: One Master node managing cluster orchestration.
e Data Plane: Two distinct Worker nodes providing the execution environment for
workloads.
Workload: One Pod deployed on each worker node (Active and Passive instances).
Storage Layer: Both pods interface with a single Persistent Volume Claim (PVC) backed

by the Lightbits storage cluster.

Kubernetes Master

1. Create the volume

All the pods are
connected to the
same PVC on
Volume 1

rwx-pod2
Suspended

Mgmt
Path

Data path Data path

Lighthits cluster
with 4 nodes

om] oo | @Y oo | on

- - - Volume has 3 copies,
replication in parallel sync
process
© 2026 Lightbits Labs

(‘, lightbits

1.2. Key Technical Components

To ensure non-disruptive storage handovers, the following components are utilized:

1.2.1. Lightbits CSI Driver

The Lightbits CSI driver facilitates the communication between Kubernetes and the Lightbits
storage cluster. It enables dynamic provisioning of volumes that support high-performance
NVMe/TCP.

1.2.2. ReadWriteMany (RWX) Access Mode

Unlike standard ReadWriteOnce (RWO) volumes, which limit mounting to a single node, RWX
volumes allow simultaneous mounting by multiple pods across different nodes. This is the
"secret sauce" for Active/Passive HA: since the volume is already attached to the passive node,
there is no "detach/attach" latency during a failover event.

1.2.3. Persistent Volume Claim (PVC)

The PVC acts as the abstract request for storage. In this architecture, the PVC points to a
Lightbits StorageClass configured for RWX. Both the Active and Passive pods reference the
same PVC, ensuring they see the same data set in real time.

1.3. Implementation Workflow

1. StorageClass Configuration: Define a StorageClass that specifies the Lightbits
provisioner and sets the protocol to NVMe/TCP.

PVC Creation: Provision a PVC with accessModes: [ReadWriteMany].

Pod Deployment: * Deploy the Active Pod on Worker 1.

Deploy the Passive Pod on Worker 2.

Both pods mount the volume at the same target path.

Failover Logic: Use a liveness probe or an external orchestrator to manage which pod is
processing traffic. If the Active Pod or Worker 1 fails, the Passive Pod on Worker
2—which already has a live connection to the storage—immediately assumes the
workload.

o0k own

© 2026 Lightbits Labs

‘; lightbits

Benefits of this Approach

Feature Technical Impact

Zero Storage Latency No waiting for volume detachment from a failed node.

Shared block storage ensures the passive node has the exact

Lisike Colm sy state of the active node.

Simplified Recovery Eliminates complex "Force Detach" operations in Kubernetes.

2. Environment Initialization and Container
Orchestration

The foundational step in this deployment is preparing a specialized container image that
manages XFS file systems and storage utilities. We chose AlmaLinux 9.5 as the base operating
system for its enterprise-grade stability and compatibility.

2.1. Container Image Construction

To handle file system operations within the Kubernetes pods, we constructed a custom Docker
image. The Dockerfile includes the necessary binaries for XFS manipulation and volume
management:

Shell
FROM almalinux:9.5

Install all required tools permanently
RUN dnf install -y --allowerasing \

curl \

xfsprogs \

util-linux \

python3 \

e2fsprogs \

&& dnf clean all

Set the path to ensure system binaries are always available
ENV PATH="/usr/sbin:/sbin:/usr/local/sbin:S$S{PATH}"

ENTRYPOINT ["/bin/bash"]

© 2026 Lightbits Labs

‘; lightbits

The image was built locally on the Master node using the following command:

Shell

sudo docker build -t almalinux:latest .

2.2. Image Distribution Workflow

In environments where a central container registry is unavailable or for initial staging, we used a
manual distribution method to ensure image parity across the cluster.

Step A: Export and Compression. The image was serialized into a compressed tarball to
facilitate transport:

Shell

sudo docker save almalinux:latest | gzip > almalinux.tar.gz

Step B: Network Transfer. The archive was securely transferred from the Master node to both
Worker 1 and Worker 2 via SCP:

Shell

scp almalinux.tar.gz demo@workerl:
scp almalinux.tar.gz demo@worker?2:

Step C: Image Ingestion. On each worker node, the image was loaded into the local Docker
engine:

Shell

sudo docker load < ./almalinux.tar.gz

© 2026 Lightbits Labs

http://almalinux.tar.gz
http://almalinux.tar.gz

(‘, lightbits

2.3.Verification of Node Readiness

To confirm the workers were prepared for the HA workload, we verified the presence of the
image using the Docker CLI:

Shell

sudo docker images

Expected Output:

Shell
IMAGE ID DISK USAGE CONTENT SIZE EXTRA
almalinux:latest 8e43303e302a 373MB 94 .5MB

With the standardized runtime environment installed on all worker nodes, the infrastructure is
now ready for the Kubernetes HA configuration and the integration of Lightbits RWX volumes.

3. Kubernetes High Availability Configuration

To implement the Active/Passive failover logic, we define a unified manifest comprising the
RBAC permissions, storage requirements, and workload specifications. This configuration
ensures that Kubernetes manages stateful transitions without corruption of storage.

3.1. Role-Based Access Control (RBAC) and Leader Election

The cornerstone of this HA architecture is the Leader Election mechanism. We use a dedicated
ServiceAccount and Role to allow the pods to interact with Kubernetes ConfigMaps. These
ConfigMaps act as a distributed lock; whichever pod holds the lock is the "Active" node, while
the other remains "Suspended.”

© 2026 Lightbits Labs

Shell

1. PERMISSIONS
apiVersion: vi
kind: ServiceAccount
metadata:
name: leader-election-sa
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: leader-election-role
rules:
- apiGroups: [""]
resources: ["configmaps"]
verbs: ["get", "watch", "list", "create", "update", "patch", "delete"]
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: leader-election-rolebinding
subjects:
- kind: ServiceAccount
name: leader-election-sa
roleRef:
kind: Role
name: leader-election-role
apiGroup: rbac.authorization.k8s.io

3.2. Storage Definition (Persistent Volume Claim)

The Persistent Volume Claim (PVC) is configured in Block Mode with ReadWriteMany (RWX)
access. Using volumeMode: Block allows the application to interact directly with the raw device
provided by Lightbits, which is critical for high-performance XFS management.

© 2026 Lightbits Labs

;: lightbits

Shell
2. STORAGE (Block Mode RWX)
apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: rwx-pvc
spec:
storageClassName: "example-sc"
accessModes: ["ReadWriteMany"]
volumeMode: Block
resources:
requests:
storage: 20Gi

3.3. Workload Orchestration (Worker 1 & Worker 2)

The Pod specifications are designed to handle the transitions between active and passive
states. Each pod is pinned to a specific worker node to ensure physical redundancy.
The operational logic is as follows:
1. Node Affinity: Explicitly targets a specific worker node.
2. Leader Election: The pod checks its status via the ServiceAccount. If it is not the leader,
it remains in a "hot standby" state.
3. Active Transition: Once a pod acquires leadership:
o It scans the block device for an existing XFS signature.
o If no filesystem exists, it initializes the XFS volume.
o It mounts the XFS filesystem to the designated mount point.
4. Graceful Termination/Suspension: When a leader yields their position:
o The system executes a memory-to-disk flush (fsync).
o A full synchronization is performed to ensure data integrity.
o The XFS volume is unmounted, though the block device remains connected to
the PVC for immediate takeover.

© 2026 Lightbits Labs

{’} lightbits

Configuration for rwx-pod1:

Shell
3. POD FOR WORKER 1
apiVersion: vi
kind: Pod
metadata:
name: "rwx-podl"
labels:
app: rwx-pods
spec:
serviceAccountName: leader-election-sa
nodeName: worker1
containers:
- name: workload
image: docker.io/library/almalinux:latest
imagePullPolicy: IfNotPresent
securityContext:
privileged: true
command: ["/bin/bash", "-c"]
args:
-
LOCK_CM="block-device-lock"
DEV="/dev/1lbcsiblkdev"
MNT="/mnt/data"
mkdir -p SMNT
NS=$(cat /var/run/secrets/kubernetes.io/serviceaccount/namespace)
TOKEN=S$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)

K8S_API="https://kubernetes.default.svc/api/v1/namespaces/SNS/configmaps"

while true; do

curl -s -k -X POST "SK8S_API" -H "Authorization: Bearer STOKEN" -H
"Content-Type: application/json" -d
"{\"metadata\":{\"name\":\"SLOCK_CM\"}, \"data\":{\"leader\":\"SHOSTNAME\"}}" >
/dev/null

RESPONSE=$S(curl -s -k -X GET "SK8S_API/SLOCK_CM" -H "Authorization:
Bearer STOKEN")

CURRENT_LEADER=$(echo "SRESPONSE" | python3 -c "import sys, json;
print(json.load(sys.stdin).get('data’', {}).get('leader', ''))" 2>/dev/null)

if ["SCURRENT_LEADER" = "SHOSTNAME"]; then
echo "$(date): [ACTIVE] I am the leader (SHOSTNAME)."

10

& y lightbits

if [-b "SDEV"]; then

now. ..

fi
sl
else
ec
if

fi
sl

fi

done
volumeDevi

- name:
device

volumes:

- name: 1b
persiste
claimN

Force kernel to recognize the device properly
blockdev --flushbufs $DEV
blockdev --rereadpt SDEV || true

SMART CHECK: Check for XFS signature
if ! blkid SDEV | grep -q "TYPE=\"xfs\""; then
echo "$§(date): No XFS signature found on $DEV. Formatting

mkfs.xfs -f SDEV
else

echo "$(date): Valid XFS signature detected. Skipping format."
fi

MOUNT
if ! mountpoint -q SMNT; then

echo "$(date): Attempting mount..."

mount -t xfs -o nouuid,wsync SDEV SMNT && echo "Mount Success!"
fi

PERSISTENCE

echo "Heartbeat from SHOSTNAME at $(date)" >> SMNT/heartbeat.txt
sync SMNT

xfs_freeze -f SMNT && xfs_freeze -u SMNT

eep 10

ho "$(date): [PASSIVE] Leader is SCURRENT_LEADER."
mountpoint -q SMNT; then

sync SMNT

umount SMNT || umount -1 SMNT

eep 5

ces:
1b-csi-mount
Path: /dev/lbcsiblkdev

-csi-mount
ntVolumeClaim:
ame: rwx-pvc

© 2026 Lightbits Labs

{’} lightbits

Configuration for rwx-pod2:

Shell
4. POD FOR WORKER 2
apiVersion: vi
kind: Pod
metadata:
name: "rwx-pod2"
labels:
app: rwx-pods
spec:
serviceAccountName: leader-election-sa
nodeName: worker2
containers:
- name: workload
image: almalinux:latest
imagePullPolicy: IfNotPresent
securityContext:
privileged: true
command: ["/bin/bash", "-c"]
args:
-
LOCK_CM="block-device-lock"
DEV="/dev/lbcsiblkdev"
MNT="/mnt/data"
mkdir -p SMNT
NS=S(cat /var/run/secrets/kubernetes.io/serviceaccount/namespace)
TOKEN=S$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)

K8S_API="https://kubernetes.default.svc/api/v1/namespaces/SNS/configmaps"

while true; do

curl -s -k -X POST "SK8S_API" -H "Authorization: Bearer STOKEN" -H
"Content-Type: application/json" -d
"{\"metadata\":{\"name\" :\"SLOCK_CM\"},\"data\":{\"leader\":\"SHOSTNAME\"}}" >
/dev/null

RESPONSE=S(curl -s -k -X GET "SK8S_API/SLOCK_CM" -H "Authorization:
Bearer STOKEN")

CURRENT_LEADER=$(echo "SRESPONSE" | python3 -c "import sys, json;
print(json.load(sys.stdin).get('data', {}).get('leader', ''))" 2>/dev/null)

if ["SCURRENT_LEADER" = "SHOSTNAME"]; then
echo "$(date): [ACTIVE] I am the leader."

12

Q y lightbits

if [-b "SDEV"]; then
blockdev --flushbufs $DEV
blockdev --rereadpt SDEV || true
if ! blkid SDEV | grep -q "TYPE=\"xfs\""; then
mkfs.xfs -f SDEV
fi
if ! mountpoint -q SMNT; then
mount -t xfs -o nouuid,wsync SDEV SMNT && echo "Mount Success!"
fi
echo "Heartbeat from SHOSTNAME at $(date)" >> SMNT/heartbeat.txt
sync SMNT
xfs_freeze -f SMNT && xfs_freeze -u SMNT
fi
sleep 10
else
echo "$(date): [PASSIVE] Leader is SCURRENT_LEADER."
if mountpoint -q SMNT; then
sync SMNT
umount SMNT || umount -1 $MNT
fi
sleep 5
fi
done
volumeDevices:
- name: lb-csi-mount
devicePath: /dev/lbcsiblkdev
volumes:
- name: lb-csi-mount
persistentVolumeClaim:
claimName: rwx-pvc

4. Deployment and Failover Validation

To validate the high-availability architecture, we perform a series of tests demonstrating
automated storage provisioning, leader election, and non-disruptive data migration between
nodes.

© 2026 Lightbits Labs

S lightbits

4.1. Provisioning the Pods and RWX Storage

Starting from an empty namespace, we apply the ActiveSuspend.yaml manifest. This triggers
the concurrent creation of the RBAC roles, the Lightbits-backed PVC, and the two worker Pods.

Shell

kubectl create -f ActiveSuspend.yaml

serviceaccount/leader-election-sa created
role.rbac.authorization.k8s.io/leader-election-role created
rolebinding.rbac.authorization.k8s.io/leader-election-rolebinding created
persistentvolumeclaim/rwx-pvc created

pod/rwx-pod1 created

pod/rwx-pod2 created

Once applied, we verify that the scheduler has correctly distributed the workloads across
different physical nodes:

Shell

kubectl get pod -o wide

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
rwx-pod1 1/1 Running 2] 49s 10.244.2.77 worker1 <none> <none>

rwx-pod2 1/1 Running %] 49s 10.244.1.59 worker2 <none> <none>

Leader Initialization
Upon startup, the Pods compete for the leader lock. In this instance, rwx-pod1 acquires

leadership, detects the unformatted Lightbits block device, initializes it with XFS, and mounts
the file system.

© 2026 Lightbits Labs

& y lightbits

Logs from rwx-pod1 (Active):

Shell

kubectl logs rwx-pod1

Thu Jan 8 ©8:58:29 UTC 2026: [ACTIVE] I am the leader (rwx-podl).

Thu Jan 8 ©88:58:29 UTC 20826: No XFS signature found on /dev/lbcsiblkdev.
Formatting now. ..

/dev/1bcsiblkdev isize=512 agcount=4, agsize=1310720 blks

meta-data=

= sectsz=4096 attr=2, projid32bit=1

= crec=1 finobt=1, sparse=1, rmapbt=0

= reflink=1 bigtime=1 inobtcount=1 nrext64=0
data = bsize=4096 blocks=5242880, imaxpct=25

= sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=16384, version=2

= sectsz=4096 sunit=1 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

Discarding blocks.. .Done.
Thu Jan 8 08:58:29 UTC 2026: Attempting mount...
Mount Success!

Logs from rwx-pod2 (Suspended):

Shell

kubectl logs rwx-pod2
Thu Jan 8 ©8:58:27 UTC 2026: [PASSIVE] Leader is rwx-pod1.

At this stage, both worker nodes are physically connected to the Lightbits PVC via NVMe/TCP,
but only the Active node has the XFS mount point engaged. As shown in the screenshot below
from Photon, our management Ul:

© 2026 Lightbits Labs

(‘, lightbits

4.2. Testing Failover and Data Integrity

The ultimate test of a storage-centric HA system is the ability to persist data across a
"handover" event.

Step 1: Data Creation on Active Node

We access rwx-pod1 to create a test directory and a persistent file:

Shell

kubectl exec -it rwx-pod1 -- /bin/bash
cd /mnt/data

[root@rwx-pod1 datal# 1ls

heartbeat.txt

[root@rwx-pod1 datal# mkdir Test
[root@rwx-pod1 datal# cd Test
[root@rwx-pod1 Test]# vi failover.text
[root@rwx-pod1 Test]# cat failover.text
This line is created from pod: rwx-pod1l.
[root@rwx-pod1 Test]# exit

© 2026 Lightbits Labs

Q y lightbits

Step 2: Executing the Failover

We simulate a failover by manually patching the ConfigMap to transfer leadership to rwx-pod2.

Shell

kubectl patch configmap block-device-lock --type merge -p
"{"data":{"leader" :"rwx-pod2"}}"

Output:

Shell
configmap/block-device-lock patched

Observation:
e rwx-pod1 transitions to [PASSIVE], flushes buffers, and unmounts the volume.
e rwx-pod2 transitions to [ACTIVE], detects the existing XFS signature, and mounts the
volume instantly.

Step 3: Verifying Data on New Leader

We verify that rwx-pod2 has inherited the state from the previous leader:

Bash

Shell

kubectl exec -it rwx-pod2 -- cat /mnt/data/Test/failover.text
Output: This line is created from pod: rwx-pod1.

© 2026 Lightbits Labs

(‘, lightbits

Step 4: Failback and Consistency Check
Finally, we add data on rwx-pod2 and perform a failback to rwx-pod1.

Bash

Shell

Add data on pod2
echo "This line is created from pod: rwx-pod2." >> /mnt/data/Test/failover.text

Failback to pod1
kubectl patch configmap block-device-lock --type merge -p
"{"data":{"leader" :"rwx-pod1"}}"

Upon checking rwx-pod1, the file contains the full history of edits from both pods, confirming that
the Lightbits RWX capability ensures zero data loss and seamless storage connectivity during
node transitions.

5. Conclusion

Implementing an Active/Passive High Availability environment with Lightbits RWX storage
successfully addresses the critical challenge of storage persistence during Kubernetes failover
events. By using the NVMe/TCP storage protocol and the ReadWriteMany access mode, we
have demonstrated that storage connectivity can be maintained across multiple worker nodes
simultaneously. This architectural choice eliminates the traditional "detach-and-attach" latencies
associated with standard block storage, providing a foundation for near-instantaneous workload
transitions.

The integration of a Leader Election mechanism via Kubernetes RBAC and ConfigMaps
provides a sophisticated layer of orchestration that prevents data corruption while ensuring
continuous availability. As evidenced by our failover and failback testing, the transition between
the Active and Suspended states is managed gracefully—incorporating essential data integrity
operations such as memory-to-disk flushes and file system synchronization. This ensures that
the passive node is always "warm" and ready to assume the primary role with a consistent view
of the XFS file system.

© 2026 Lightbits Labs

\: lightbits

Ultimately, this solution provides enterprise-grade resilience for stateful applications without the
complexity of traditional clustering software. By combining the high-throughput of Lightbits'
disaggregated storage with native Kubernetes orchestration, organizations can achieve a
zero-downtime storage architecture. This approach not only simplifies disaster recovery
workflows but also maximizes infrastructure utilization, ensuring that mission-critical data
remains accessible and intact even in the event of individual node failures.

About Lightbits Labs

Lightbits Labs® (Lightbits) invented the NVMe over TCP protocol and offers best-in-class software-defined block
storage that enables modernization of data center infrastructure for organizations building private or public clouds.
Built from the ground up for low consistent latency, scalability, resiliency, and cost-efficiency, Lightbits software delivers
the best price/performance for real-time analytics, transactional, and Al/ML workloads. Lightbits Labs is backed by
enterprise technology leaders [Cisco Investments, Dell Technologies Capital, Intel Capital, Lenovo, and Micron] and is on

a mission to deliver the fastest and most cost-efficient data storage for performance-sensitive workloads at scale.

Pasy

& www.lightbitslabs.com info@lightbitslabs.com
US Offices Israel Office
1830 The Alameda, 17 Atir Yeda Street,
San Jose, CA 95126, Kfar Saba 4464313,
USA Israel

The information in this document and any document referenced herein is provided for informational purposes only, is provided as is and
with all faults and cannot be understood as substituting for customized service and information that might be developed by Lightbits
Labs Itd for a particular user based upon that user’s particular environment. Reliance upon this document and any document referenced

herein is at the user’s own risk.

The software is provided "As is", without warranty of any kind, express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and non-infringement. In no event shall the contributors or copyright holders be liable
for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with

the software or the use or other dealings with the software.

Unauthorized copying or distributing of included software files, via any medium is strictly prohibited.

COPYRIGHT®© 2026 LIGHTBITS LABS LTD. - ALL RIGHTS RESERVED LBWP20/2026/1

© 2026 Lightbits Labs

http://www.lightbitslabs.com/

	
	
	Redefining HA for Kubernetes: Lightning-Fast Pod Failover with Lightbits RWX
	Implementation Guide for HA Kubernetes in Active/Suspend mode
	
	
	1.​Introduction
	1.1. Architectural Overview
	​1.2. Key Technical Components
	1.2.1. Lightbits CSI Driver
	1.2.2. ReadWriteMany (RWX) Access Mode
	1.2.3. Persistent Volume Claim (PVC)

	1.3. Implementation Workflow
	
	
	Benefits of this Approach

	2. Environment Initialization and Container Orchestration
	2.1. Container Image Construction
	2.2. Image Distribution Workflow
	
	
	

	2.3.Verification of Node Readiness
	

	3. Kubernetes High Availability Configuration
	3.1. Role-Based Access Control (RBAC) and Leader Election
	
	3.2. Storage Definition (Persistent Volume Claim)
	
	3.3. Workload Orchestration (Worker 1 & Worker 2)
	

	4. Deployment and Failover Validation
	4.1. Provisioning the Pods and RWX Storage
	
	4.2. Testing Failover and Data Integrity
	
	Step 1: Data Creation on Active Node
	
	
	
	Step 2: Executing the Failover
	​Step 3: Verifying Data on New Leader
	
	
	
	
	Step 4: Failback and Consistency Check

	5. Conclusion
	
	About Lightbits Labs

