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Abstract 

This white paper details a robust, scalable architecture that leverages the ReadWriteMany (RWX) 

capabilities of the Lightbits disaggregated, software-defined storage platform to establish a 

resilient Active/Passive High Availability (HA) framework for Kubernetes. By utilizing Lightbits’ 

native support for clustered NVMe® over TCP (NVMe/TCP) storage, this solution enables 

seamless volume failover and persistent data access across multiple Kubernetes nodes. The 

integration focuses on eliminating single points of failure at the storage layer, ensuring that 

mission-critical stateful applications can automatically recover on standby nodes without data loss 

or manual intervention. The paper outlines the implementation of Lightbits RWX volumes, the 

configuration of Kubernetes pod anti-affinity rules for HA orchestration, and the best practices for 

achieving rapid failover recovery times. This combined solution demonstrates how to achieve 

enterprise-grade reliability and performance for containerized workloads by leveraging Lightbits' 

shared-storage efficiency within a dynamically orchestrated Kubernetes environment. 
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1. Introduction 
This white paper provides a comprehensive overview and technical guidelines for implementing 
a High Availability (HA) Active/Passive environment within Kubernetes. By leveraging the 
ReadWriteMany (RWX) capabilities of the Lightbits Cloud-Native Storage Interface (CSI), 
organizations can achieve seamless failover with zero downtime from a storage connectivity 
perspective. 
 

1.1. Architectural Overview 
The solution architecture consists of a standard Kubernetes cluster configuration optimized for 
storage resilience: 

● Control Plane: One Master node managing cluster orchestration. 
● Data Plane: Two distinct Worker nodes providing the execution environment for 

workloads. 
● Workload: One Pod deployed on each worker node (Active and Passive instances). 
● Storage Layer: Both pods interface with a single Persistent Volume Claim (PVC) backed 

by the Lightbits storage cluster. 
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1.2. Key Technical Components 
To ensure non-disruptive storage handovers, the following components are utilized: 
 

1.2.1. Lightbits CSI Driver 
The Lightbits CSI driver facilitates the communication between Kubernetes and the Lightbits 
storage cluster. It enables dynamic provisioning of volumes that support high-performance 
NVMe/TCP. 
 

1.2.2. ReadWriteMany (RWX) Access Mode 
Unlike standard ReadWriteOnce (RWO) volumes, which limit mounting to a single node, RWX 
volumes allow simultaneous mounting by multiple pods across different nodes. This is the 
"secret sauce" for Active/Passive HA: since the volume is already attached to the passive node, 
there is no "detach/attach" latency during a failover event. 
 

1.2.3. Persistent Volume Claim (PVC) 
The PVC acts as the abstract request for storage. In this architecture, the PVC points to a 
Lightbits StorageClass configured for RWX. Both the Active and Passive pods reference the 
same PVC, ensuring they see the same data set in real time. 
 

1.3. Implementation Workflow 
1. StorageClass Configuration: Define a StorageClass that specifies the Lightbits 

provisioner and sets the protocol to NVMe/TCP. 
2. PVC Creation: Provision a PVC with accessModes: [ReadWriteMany]. 
3. Pod Deployment: * Deploy the Active Pod on Worker 1. 
4. Deploy the Passive Pod on Worker 2. 
5. Both pods mount the volume at the same target path. 
6. Failover Logic: Use a liveness probe or an external orchestrator to manage which pod is 

processing traffic. If the Active Pod or Worker 1 fails, the Passive Pod on Worker 
2—which already has a live connection to the storage—immediately assumes the 
workload. 
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Benefits of this Approach 

Feature Technical Impact 

Zero Storage Latency No waiting for volume detachment from a failed node. 

Data Consistency 
Shared block storage ensures the passive node has the exact 
state of the active node. 

Simplified Recovery Eliminates complex "Force Detach" operations in Kubernetes. 

 

 

2. Environment Initialization and Container 
Orchestration 
The foundational step in this deployment is preparing a specialized container image that 
manages XFS file systems and storage utilities. We chose AlmaLinux 9.5 as the base operating 
system for its enterprise-grade stability and compatibility. 

2.1. Container Image Construction 
To handle file system operations within the Kubernetes pods, we constructed a custom Docker 
image. The Dockerfile includes the necessary binaries for XFS manipulation and volume 
management: 
 

FROM almalinux:9.5 
 
# Install all required tools permanently 
RUN dnf install -y --allowerasing \ 
    curl \ 
    xfsprogs \ 
    util-linux \ 
    python3 \ 
    e2fsprogs \ 
    && dnf clean all 
 
# Set the path to ensure system binaries are always available 
ENV PATH="/usr/sbin:/sbin:/usr/local/sbin:${PATH}" 
 
ENTRYPOINT ["/bin/bash"] 
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The image was built locally on the Master node using the following command: 
 

sudo docker build -t almalinux:latest . 

 

2.2. Image Distribution Workflow 
In environments where a central container registry is unavailable or for initial staging, we used a 
manual distribution method to ensure image parity across the cluster. 
 
Step A: Export and Compression. The image was serialized into a compressed tarball to 
facilitate transport:  
 

sudo docker save almalinux:latest | gzip > almalinux.tar.gz 

 
Step B: Network Transfer. The archive was securely transferred from the Master node to both 
Worker 1 and Worker 2 via SCP:  
 

scp almalinux.tar.gz demo@worker1: 
scp almalinux.tar.gz demo@worker2: 

Step C: Image Ingestion. On each worker node, the image was loaded into the local Docker 
engine: 

sudo docker load < ./almalinux.tar.gz 
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2.3.Verification of Node Readiness 
To confirm the workers were prepared for the HA workload, we verified the presence of the 
image using the Docker CLI:  
 

sudo docker images 

 
 
Expected Output: 
 

IMAGE              ID             DISK USAGE   CONTENT SIZE   EXTRA 
almalinux:latest   8e43303e302a        373MB         94.5MB 

 
With the standardized runtime environment installed on all worker nodes, the infrastructure is 
now ready for the Kubernetes HA configuration and the integration of Lightbits RWX volumes. 

 

3. Kubernetes High Availability Configuration 
To implement the Active/Passive failover logic, we define a unified manifest comprising the 
RBAC permissions, storage requirements, and workload specifications. This configuration 
ensures that Kubernetes manages stateful transitions without corruption of storage. 

3.1. Role-Based Access Control (RBAC) and Leader Election 
The cornerstone of this HA architecture is the Leader Election mechanism. We use a dedicated 
ServiceAccount and Role to allow the pods to interact with Kubernetes ConfigMaps. These 
ConfigMaps act as a distributed lock; whichever pod holds the lock is the "Active" node, while 
the other remains "Suspended." 
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--- 
# 1. PERMISSIONS 
apiVersion: v1 
kind: ServiceAccount 
metadata: 
  name: leader-election-sa 
--- 
apiVersion: rbac.authorization.k8s.io/v1 
kind: Role 
metadata: 
  name: leader-election-role 
rules: 
  - apiGroups: [""] 
    resources: ["configmaps"] 
    verbs: ["get", "watch", "list", "create", "update", "patch", "delete"] 
--- 
apiVersion: rbac.authorization.k8s.io/v1 
kind: RoleBinding 
metadata: 
  name: leader-election-rolebinding 
subjects: 
  - kind: ServiceAccount 
    name: leader-election-sa 
roleRef: 
  kind: Role 
  name: leader-election-role 
  apiGroup: rbac.authorization.k8s.io 

 

3.2. Storage Definition (Persistent Volume Claim) 
The Persistent Volume Claim (PVC) is configured in Block Mode with ReadWriteMany (RWX) 
access. Using volumeMode: Block allows the application to interact directly with the raw device 
provided by Lightbits, which is critical for high-performance XFS management. 
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# 2. STORAGE (Block Mode RWX) 
apiVersion: v1 
kind: PersistentVolumeClaim 
metadata: 
  name: rwx-pvc 
spec: 
  storageClassName: "example-sc" 
  accessModes: ["ReadWriteMany"] 
  volumeMode: Block 
  resources: 
    requests: 
      storage: 20Gi 
--- 

 

3.3. Workload Orchestration (Worker 1 & Worker 2) 
The Pod specifications are designed to handle the transitions between active and passive 
states. Each pod is pinned to a specific worker node to ensure physical redundancy. 
The operational logic is as follows: 

1. Node Affinity: Explicitly targets a specific worker node. 
2. Leader Election: The pod checks its status via the ServiceAccount. If it is not the leader, 

it remains in a "hot standby" state. 
3. Active Transition: Once a pod acquires leadership: 

○ It scans the block device for an existing XFS signature. 
○ If no filesystem exists, it initializes the XFS volume. 
○ It mounts the XFS filesystem to the designated mount point. 

4. Graceful Termination/Suspension: When a leader yields their position: 
○ The system executes a memory-to-disk flush (fsync). 
○ A full synchronization is performed to ensure data integrity. 
○ The XFS volume is unmounted, though the block device remains connected to 

the PVC for immediate takeover. 
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Configuration for rwx-pod1: 
 

# 3. POD FOR WORKER 1 
apiVersion: v1 
kind: Pod 
metadata: 
  name: "rwx-pod1" 
  labels: 
    app: rwx-pods 
spec: 
  serviceAccountName: leader-election-sa 
  nodeName: worker1 
  containers: 
  - name: workload 
    image: docker.io/library/almalinux:latest 
    imagePullPolicy: IfNotPresent 
    securityContext: 
      privileged: true 
    command: ["/bin/bash", "-c"] 
    args: 
      - | 
        LOCK_CM="block-device-lock" 
        DEV="/dev/lbcsiblkdev" 
        MNT="/mnt/data" 
        mkdir -p $MNT 
        NS=$(cat /var/run/secrets/kubernetes.io/serviceaccount/namespace) 
        TOKEN=$(cat /var/run/secrets/kubernetes.io/serviceaccount/token) 
        
K8S_API="https://kubernetes.default.svc/api/v1/namespaces/$NS/configmaps" 
 
        while true; do 
          curl -s -k -X POST "$K8S_API" -H "Authorization: Bearer $TOKEN" -H 
"Content-Type: application/json" -d 
"{\"metadata\":{\"name\":\"$LOCK_CM\"},\"data\":{\"leader\":\"$HOSTNAME\"}}" > 
/dev/null 
          RESPONSE=$(curl -s -k -X GET "$K8S_API/$LOCK_CM" -H "Authorization: 
Bearer $TOKEN") 
          CURRENT_LEADER=$(echo "$RESPONSE" | python3 -c "import sys, json; 
print(json.load(sys.stdin).get('data', {}).get('leader', ''))" 2>/dev/null) 
 
          if [ "$CURRENT_LEADER" = "$HOSTNAME" ]; then 
            echo "$(date): [ACTIVE] I am the leader ($HOSTNAME)." 
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            if [ -b "$DEV" ]; then 
              # Force kernel to recognize the device properly 
              blockdev --flushbufs $DEV 
              blockdev --rereadpt $DEV || true 
 
              # SMART CHECK: Check for XFS signature 
              if ! blkid $DEV | grep -q "TYPE=\"xfs\""; then 
                echo "$(date): No XFS signature found on $DEV. Formatting 
now..." 
                mkfs.xfs -f $DEV 
              else 
                echo "$(date): Valid XFS signature detected. Skipping format." 
              fi 
 
              # MOUNT 
              if ! mountpoint -q $MNT; then 
                echo "$(date): Attempting mount..." 
                mount -t xfs -o nouuid,wsync $DEV $MNT && echo "Mount Success!" 
              fi 
 
              # PERSISTENCE 
              echo "Heartbeat from $HOSTNAME at $(date)" >> $MNT/heartbeat.txt 
              sync $MNT 
              xfs_freeze -f $MNT && xfs_freeze -u $MNT 
            fi 
            sleep 10 
          else 
            echo "$(date): [PASSIVE] Leader is $CURRENT_LEADER." 
            if mountpoint -q $MNT; then 
              sync $MNT 
              umount $MNT || umount -l $MNT 
            fi 
            sleep 5 
          fi 
        done 
    volumeDevices: 
      - name: lb-csi-mount 
        devicePath: /dev/lbcsiblkdev 
  volumes: 
    - name: lb-csi-mount 
      persistentVolumeClaim: 
        claimName: rwx-pvc 
--- 
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Configuration for rwx-pod2: 
 

# 4. POD FOR WORKER 2 
apiVersion: v1 
kind: Pod 
metadata: 
  name: "rwx-pod2" 
  labels: 
    app: rwx-pods 
spec: 
  serviceAccountName: leader-election-sa 
  nodeName: worker2 
  containers: 
  - name: workload 
    image: almalinux:latest 
    imagePullPolicy: IfNotPresent 
    securityContext: 
      privileged: true 
    command: ["/bin/bash", "-c"] 
    args: 
      - | 
        LOCK_CM="block-device-lock" 
        DEV="/dev/lbcsiblkdev" 
        MNT="/mnt/data" 
        mkdir -p $MNT 
        NS=$(cat /var/run/secrets/kubernetes.io/serviceaccount/namespace) 
        TOKEN=$(cat /var/run/secrets/kubernetes.io/serviceaccount/token) 
        
K8S_API="https://kubernetes.default.svc/api/v1/namespaces/$NS/configmaps" 
 
        while true; do 
          curl -s -k -X POST "$K8S_API" -H "Authorization: Bearer $TOKEN" -H 
"Content-Type: application/json" -d 
"{\"metadata\":{\"name\":\"$LOCK_CM\"},\"data\":{\"leader\":\"$HOSTNAME\"}}" > 
/dev/null 
          RESPONSE=$(curl -s -k -X GET "$K8S_API/$LOCK_CM" -H "Authorization: 
Bearer $TOKEN") 
          CURRENT_LEADER=$(echo "$RESPONSE" | python3 -c "import sys, json; 
print(json.load(sys.stdin).get('data', {}).get('leader', ''))" 2>/dev/null) 
 
          if [ "$CURRENT_LEADER" = "$HOSTNAME" ]; then 
            echo "$(date): [ACTIVE] I am the leader." 

12 

 
© 2026  Lightbits Labs 

 



 

            if [ -b "$DEV" ]; then 
              blockdev --flushbufs $DEV 
              blockdev --rereadpt $DEV || true 
              if ! blkid $DEV | grep -q "TYPE=\"xfs\""; then 
                mkfs.xfs -f $DEV 
              fi 
              if ! mountpoint -q $MNT; then 
                mount -t xfs -o nouuid,wsync $DEV $MNT && echo "Mount Success!" 
              fi 
              echo "Heartbeat from $HOSTNAME at $(date)" >> $MNT/heartbeat.txt 
              sync $MNT 
              xfs_freeze -f $MNT && xfs_freeze -u $MNT 
            fi 
            sleep 10 
          else 
            echo "$(date): [PASSIVE] Leader is $CURRENT_LEADER." 
            if mountpoint -q $MNT; then 
              sync $MNT 
              umount $MNT || umount -l $MNT 
            fi 
            sleep 5 
          fi 
        done 
    volumeDevices: 
      - name: lb-csi-mount 
        devicePath: /dev/lbcsiblkdev 
  volumes: 
    - name: lb-csi-mount 
      persistentVolumeClaim: 
        claimName: rwx-pvc 

 

4. Deployment and Failover Validation 
To validate the high-availability architecture, we perform a series of tests demonstrating 
automated storage provisioning, leader election, and non-disruptive data migration between 
nodes. 
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4.1. Provisioning the Pods and RWX Storage 
Starting from an empty namespace, we apply the ActiveSuspend.yaml manifest. This triggers 
the concurrent creation of the RBAC roles, the Lightbits-backed PVC, and the two worker Pods. 
 

kubectl create -f ActiveSuspend.yaml  
serviceaccount/leader-election-sa created 
role.rbac.authorization.k8s.io/leader-election-role created 
rolebinding.rbac.authorization.k8s.io/leader-election-rolebinding created 
persistentvolumeclaim/rwx-pvc created 
pod/rwx-pod1 created 
pod/rwx-pod2 created 

 
Once applied, we verify that the scheduler has correctly distributed the workloads across 
different physical nodes: 
 

kubectl get pod -o wide 
NAME       READY   STATUS    RESTARTS   AGE   IP            NODE      NOMINATED NODE   READINESS GATES 
rwx-pod1   1/1     Running   0          49s   10.244.2.77   worker1   <none>           <none> 
rwx-pod2   1/1     Running   0          49s   10.244.1.59   worker2   <none>           <none> 

 

 
 
Leader Initialization 
Upon startup, the Pods compete for the leader lock. In this instance, rwx-pod1 acquires 
leadership, detects the unformatted Lightbits block device, initializes it with XFS, and mounts 
the file system. 
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Logs from rwx-pod1 (Active): 

kubectl logs rwx-pod1 
Thu Jan  8 08:58:29 UTC 2026: [ACTIVE] I am the leader (rwx-pod1). 
Thu Jan  8 08:58:29 UTC 2026: No XFS signature found on /dev/lbcsiblkdev. 
Formatting now... 
meta-data=/dev/lbcsiblkdev       isize=512    agcount=4, agsize=1310720 blks 
         =                       sectsz=4096  attr=2, projid32bit=1 
         =                       crc=1        finobt=1, sparse=1, rmapbt=0 
         =                       reflink=1    bigtime=1 inobtcount=1 nrext64=0 
data     =                       bsize=4096   blocks=5242880, imaxpct=25 
         =                       sunit=0      swidth=0 blks 
naming   =version 2              bsize=4096   ascii-ci=0, ftype=1 
log      =internal log           bsize=4096   blocks=16384, version=2 
         =                       sectsz=4096  sunit=1 blks, lazy-count=1 
realtime =none                   extsz=4096   blocks=0, rtextents=0 
Discarding blocks...Done. 
Thu Jan  8 08:58:29 UTC 2026: Attempting mount... 
Mount Success! 

 

Logs from rwx-pod2 (Suspended): 

kubectl logs rwx-pod2 
Thu Jan  8 08:58:27 UTC 2026: [PASSIVE] Leader is rwx-pod1. 

 

At this stage, both worker nodes are physically connected to the Lightbits PVC via NVMe/TCP, 
but only the Active node has the XFS mount point engaged. As shown in the screenshot below 
from Photon, our management UI: 
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4.2. Testing Failover and Data Integrity 
The ultimate test of a storage-centric HA system is the ability to persist data across a 
"handover" event. 

 

Step 1: Data Creation on Active Node 
We access rwx-pod1 to create a test directory and a persistent file: 
 

kubectl exec -it rwx-pod1 -- /bin/bash 
cd /mnt/data 
[root@rwx-pod1 data]# ls 
heartbeat.txt 
[root@rwx-pod1 data]# mkdir Test 
[root@rwx-pod1 data]# cd Test 
[root@rwx-pod1 Test]# vi failover.text 
[root@rwx-pod1 Test]# cat failover.text 
This line is created from pod: rwx-pod1. 
[root@rwx-pod1 Test]# exit 
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Step 2: Executing the Failover 
We simulate a failover by manually patching the ConfigMap to transfer leadership to rwx-pod2. 
 

kubectl patch configmap block-device-lock --type merge -p 
'{"data":{"leader":"rwx-pod2"}}' 

 
Output: 
 

configmap/block-device-lock patched 

 

Observation: 
● rwx-pod1 transitions to [PASSIVE], flushes buffers, and unmounts the volume. 
● rwx-pod2 transitions to [ACTIVE], detects the existing XFS signature, and mounts the 

volume instantly. 

 
Step 3: Verifying Data on New Leader 
We verify that rwx-pod2 has inherited the state from the previous leader: 
 
Bash 

kubectl exec -it rwx-pod2 -- cat /mnt/data/Test/failover.text 
# Output: This line is created from pod: rwx-pod1. 
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Step 4: Failback and Consistency Check 

Finally, we add data on rwx-pod2 and perform a failback to rwx-pod1. 

Bash 

# Add data on pod2 
echo "This line is created from pod: rwx-pod2." >> /mnt/data/Test/failover.text 
 
# Failback to pod1 
kubectl patch configmap block-device-lock --type merge -p 
'{"data":{"leader":"rwx-pod1"}}' 

 
Upon checking rwx-pod1, the file contains the full history of edits from both pods, confirming that 
the Lightbits RWX capability ensures zero data loss and seamless storage connectivity during 
node transitions. 
 
 

5. Conclusion 
Implementing an Active/Passive High Availability environment with Lightbits RWX storage 
successfully addresses the critical challenge of storage persistence during Kubernetes failover 
events. By using the NVMe/TCP storage protocol and the ReadWriteMany access mode, we 
have demonstrated that storage connectivity can be maintained across multiple worker nodes 
simultaneously. This architectural choice eliminates the traditional "detach-and-attach" latencies 
associated with standard block storage, providing a foundation for near-instantaneous workload 
transitions. 
 
The integration of a Leader Election mechanism via Kubernetes RBAC and ConfigMaps 
provides a sophisticated layer of orchestration that prevents data corruption while ensuring 
continuous availability. As evidenced by our failover and failback testing, the transition between 
the Active and Suspended states is managed gracefully—incorporating essential data integrity 
operations such as memory-to-disk flushes and file system synchronization. This ensures that 
the passive node is always "warm" and ready to assume the primary role with a consistent view 
of the XFS file system. 
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Ultimately, this solution provides enterprise-grade resilience for stateful applications without the 
complexity of traditional clustering software. By combining the high-throughput of Lightbits' 
disaggregated storage with native Kubernetes orchestration, organizations can achieve a 
zero-downtime storage architecture. This approach not only simplifies disaster recovery 
workflows but also maximizes infrastructure utilization, ensuring that mission-critical data 
remains accessible and intact even in the event of individual node failures. 

 

About Lightbits Labs 
Lightbits Labs® (Lightbits) invented the NVMe over TCP protocol and offers best-in-class software-defined block 

storage that enables modernization of data center infrastructure for organizations building private or public clouds. 

Built from the ground up for low consistent latency, scalability, resiliency, and cost-efficiency, Lightbits software delivers 

the best price/performance for real-time analytics, transactional, and AI/ML workloads. Lightbits Labs is backed by 

enterprise technology leaders [Cisco Investments, Dell Technologies Capital, Intel Capital, Lenovo, and Micron] and is on 

a mission to deliver the fastest and most cost-efficient data storage for performance-sensitive workloads at scale. 

 www.lightbitslabs.com     info@lightbitslabs.com 
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