

© 2025 Lightbits Labs

1

Lightbits and Veeam: Backup and
Restore Integration

Implementation Guide for Data Protection with Veeam and Lightbits
Software-Defined Storage

November 2025

Abstract

This white paper goes beyond simple installation, guiding you through the essential steps to seamlessly
integrate the Veeam Data Platform with your existing server and virtual infrastructure running on Lightbits
software-defined storage. The paper illustrates how to execute highly reliable backups and restores with
confidence, ensuring that all components work together seamlessly. By following this documented
approach, you can protect your critical production workloads and simplify disaster recovery—all while
leveraging the extreme performance and resource efficiency of Lightbits block storage. Transform your
data protection strategy from a complex challenge into a streamlined, automated process.

2

© 2025 Lightbits Labs

Table of Contents

1. Introduction ... 4
2. Veeam Backup Repository ... 5

2.1. Adding an S3-Compatible Backup Repository in Veeam .. 5
2.1.1 S3-Compatible Repository Configuration .. 6
2.1.2 Credential Configuration ... 6

3. Scripting .. 10
3.1. Script to Create the Snapshots, Clones and Mountpoints ... 11

3.1.1. First Section... 11
3.1.2 Second Section .. 17
3.1.3. Third Section ... 21

3.2. Script to Unmount the Mountpoints to Delete the Clones and the Snapshots 25
3.2.1. First Section... 25
3.2.2. Second Section ... 31
3.2.3. Third Section ... 33
3.2.4. Fourth Section ... 36

3.3. Script on the Veeam Server to Start the Script on Veeam Proxy 39
3.4. Script on the Veeam Server to Start the Script to Unmount and Delete the Snapshots. 40

4. Creating the Backup Job on the Veeam Server ... 40
5. Executing the Backup Job ... 46
6. Restore the Files Directly to the Original Server Client-1 ... 46
7. Conclusion .. 52
About Lightbits Labs .. 53

3

© 2025 Lightbits Labs

1. Introduction
This white paper details a method for achieving integrated backup and restore functionality using Veeam
Backup & Replication. This approach relies on scripting to manage the creation of snapshots and clones
from a proxy server connected to the source server. All backup processing and data handling are executed
on the proxy server, offloading the application server, while data restoration is performed directly onto
the source server. For this implementation guide, Veeam version 12.3 has been used.

The diagram below illustrates the architecture for this integration:

4

© 2025 Lightbits Labs

The steps are shown in the diagram above:

1. Veeam reaches out to the proxy server
2. The proxy backup server requests the volume uuid from the application server
3. The proxy backup server connects to Lightbits
4. The proxy backup server creates the snapshots
5. The proxy backup server creates the clones
6. The proxy backup server mounts the clones
7. The proxy backup provides the information to the Veeam server
8. The Veeam server creates the backup on the S3 object store
9. The Veeam server retrieves the data from the S3 object store
10. The Veeam server restores the data directly on the application server

2. Veeam Backup Repository
The initial configuration requires establishing a Backup Repository within Veeam. Since Garage is already
deployed within the environment (refer to the "Backup for Kubernetes" white paper for configuration
details), it will serve as the S3-compatible target for the Veeam repository.

2.1. Adding an S3-Compatible Backup Repository in Veeam
To configure the Backup Repository using the S3-compatible storage (Garage), perform the following steps
within the Veeam Backup & Replication console:

1. Launch the Veeam Backup & Replication application.
2. Navigate to the Backup Infrastructure section by clicking the corresponding option in the bottom-

left navigation pane.
3. Initiate the repository creation process by clicking the "Add Repository" button, typically located

in the top-left corner.
4. In the ensuing Add Backup Repository dialog box, select Object Storage.
5. On the next screen, choose the S3 Compatible option.
6. This action will open the New Object Storage Repository wizard, where you will continue

configuring the connection details for the Garage storage.

https://www.lightbitslabs.com/resources/ty-backup-recovery-resilience-in-kubernetes-with-veeam-kasten/

5

© 2025 Lightbits Labs

2.1.1 S3-Compatible Repository Configuration

Naming and Service Endpoint

1. In the wizard screen, provide a descriptive name for the new Object Storage Repository and click
Next.

2. The subsequent Account screen requires input for the S3 object store connection details:
○ Service Point: Enter the Service Point URL of your S3 object store. In the provided

example, this is https://192.168.1.216.
○ Region: Specify the Region configured for your S3 object store. For this example, the

value used is Garage.

2.1.2 Credential Configuration

Next, you must supply the appropriate Credentials obtained from your S3 object store (Garage):

● The required credentials are the Access Key ID and the Secret Access Key.
● In the case of Garage, these keys are typically sourced from a configuration file, such as .awsrc,

which contains the defined AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.
● Enter these keys into the respective fields in the Veeam wizard.

6

© 2025 Lightbits Labs

Click on Ok and click on the Next button in the screen below:

7

© 2025 Lightbits Labs

If a certificate needs to be installed, simply follow the installation instructions. The next step is to create a
bucket; for this example, we choose 'backup' and 'Veeam' as the folder Name. Click on Next.

On the next screen, keep the default settings and click on Next.

8

© 2025 Lightbits Labs

In the review screen, please double-check the components and click 'Apply' to proceed.

Veeam is now constructing the S3 object store, and the output should look similar to this:

9

© 2025 Lightbits Labs

Click on Next. The next screen will display a summary of the added Object storage repository. Click on
Finish, and object storage has been added to your backup infrastructure.

3. Scripting
For the scope of this implementation guide, the integration between Veeam Backup & Replication and
Lightbits block storage is implemented via scripting.

Scripting Focus

1. The initial focus will be on developing the script responsible for creating snapshots and volume
clones on the Lightbits block storage system.

2. Following this, a second script will be created to delete these snapshots and clones after the
backup operation is completed.

10

© 2025 Lightbits Labs

Veeam Server Automation

The Veeam Backup server must be configured with a third and a fourth script within the backup job. The
purpose of these commands is to remotely invoke the scripts (snapshot/clone creation and cleanup scripts)
on the designated server, facilitating the proxy-based backup of the client-1 application server through the
VeeamProxy server.

3.1. Script to Create the Snapshots, Clones and Mountpoints
To enhance readability and comprehension, the script is logically partitioned into multiple sections. The
script created is called: GetReadyForBackup.sh

The first section of the script is dedicated to identifying the necessary volumes on the Lightbits storage
system. This is crucial for creating snapshots and clones.

● Required Data: The script must obtain the Volume UUIDs (Universally Unique Identifiers) of the
volumes that need protection.

● Data Source: These Volume UUIDs must be retrieved directly from the application server,
designated as Client-1.

● Execution Location: Please note that this initial volume identification script will be executed on
the Veeam proxy server, which is the machine where all interaction with the Lightbits volumes and
Veeam ultimately occurs.

The second section involves creating clones from the snapshots, and the third section consists in mounting
the clones on the Veeam proxy server.

3.1.1. First Section

The script to identify the volume UUIDs for Client-1 and create the snapshots on Lightbits is as follows:

#!/bin/bash

11

© 2025 Lightbits Labs

--- Full Pre-freeze Script for Lightbits Snapshot and
Volume Creation ---

REVISED: This script performs the workflow in three phases: Snapshot, Clone, Mount.

NOTE: Assumes local host starts with 0 Lightbits NVMe devices.

Path to the log file for troubleshooting

LOG_FILE="./GetReadyForBackup.log"

exec > $LOG_FILE 2>&1

> "$LOG_FILE"

echo "$(date) - Starting Lightbits snapshot and volume creation workflow."

echo "--"

--- Configuration for Lightbits API ---

LIGHTBITS_IP="192.168.1.42"

PROJECT_NAME="default"

LB_API_URL="https://$LIGHTBITS_IP:443/api/v2/projects/$PROJECT_NAME"

Note: You must manually provide your Bearer Token here

LIGHTBITS_JWT="eyJhbGciOiJSUzI1NiIsImtpZCI6InN5c3RlbTpyb290IiwidHlwIjoiSldUIn0.eyJpc3M
iOiIvaG9tZS9kZW1vL2xpZ2h0b3MtY2VydGlmaWNhdGVzL2NlcnQtbGItYWRtaW4ta2V5LnBlbSIsInJvbGVzI
jpbInN5c3RlbTpjbHVzdGVyLWFkbWluIl0sImF1ZCI6IkxpZ2h0T1MiLCJzdWIiOiJsaWdodG9zLWNsaWVudCI
sImlhdCI6MTc1NTE2NDQ0NywiZXhwIjoxNzg2NzAwNDQ3fQ.l2Ak3cjAUPGkt_cKkaaQF-RP_Ear6bpARyz9U-
ngDr2p57TqWgTLYZrF6coU5XK4q92R5cWt1udILGZL88dASim5mMB59Qe5OPl48t7kQwJKJf-
dcr_CInf4vJtSW1OeohSimKY5QBQD8XieFMbliuZ5K2uPAhLW1rQNmsR4WGX_ClrlJwksl5CYXTGS9L63aurJK
Tika2je995XyyNlu__Hgalh0wZCGHUwDzFHBIAJvIL-
XRk5sb8agIjMwlHH1hTCYGCt0NeRImZUa10MHVZj2ZbtN5xXXQYPsDXKjhUmnA6m-
5DHmjYgN5FyUOnB1qLoilYIDlsDsChZeD66iQ"

--- Configuration for the remote host (Source of NGUIDs) ---

12

© 2025 Lightbits Labs

REMOTE_USER="backup"

REMOTE_HOST="client-1"

--- File paths for UUIDs ---

SNAPSHOT_FILE="./Snapshots"

VOLUMES_FILE="./Volumes"

MOUNTPOINTS_FILE="./Mountpoints"

NGUIDS_FILE="./NGuids"

--- Script Logic ---

Clear old output files to ensure fresh data for each run

> "$SNAPSHOT_FILE"

> "$VOLUMES_FILE"

> "$MOUNTPOINTS_FILE"

> "$NGUIDS_FILE"

Check for required tools on the local Veeam client machine

if ! command -v /usr/bin/curl &> /dev/null || ! command -v /usr/bin/jq &> /dev/null;
then

 echo "$(date) - ERROR: Required tools are missing. Please install curl and jq on
the Veeam client machine."

 exit 1

fi

13

© 2025 Lightbits Labs

echo "$(date) - Connecting to '$REMOTE_HOST' to get device
info (NGUIDs)..."

Find all device paths for Lightbits devices on the remote host (source devices)

LIGHTBITS_DEVICES=$(ssh "$REMOTE_USER@$REMOTE_HOST" "sudo nvme list | grep 'Lightbits'
| awk '{print \$1}'" 2>/dev/null)

if [-z "$LIGHTBITS_DEVICES"]; then

 echo "$(date) - ERROR: No Lightbits NVMe devices found on '$REMOTE_HOST'."

 echo "$(date) - Please ensure 'nvme-cli' is installed and the SSH user has
passwordless sudo for 'nvme'."

 exit 1

fi

echo "$(date) - Found the following source devices on '$REMOTE_HOST':"

echo "$LIGHTBITS_DEVICES"

echo "--"

Phase 1: Create all the snapshots

echo "$(date) - --- PHASE 1: Starting snapshot creation for all devices --- "

counter=1

Loop through each device and perform the full workflow

for DEVICE_PATH in $LIGHTBITS_DEVICES; do

14

© 2025 Lightbits Labs

 echo "$(date) - --- Processing source device:
$DEVICE_PATH ---"

 # Get the NGUID for the current device and format it with sed

 NGUID=$(ssh "$REMOTE_USER@$REMOTE_HOST" "sudo nvme id-ns $DEVICE_PATH | grep 'nguid'
| awk '{print \$NF}' | sed 's/\(.\{8\}\)\(.\{4\}\)\(.\{4\}\)\(.\{4\}\)\(.\{12\}\)/\1-
\2-\3-\4-\5/'" 2>/dev/null)

 if [-z "$NGUID"]; then

 echo "$(date) - ERROR: Failed to retrieve NGUID for $DEVICE_PATH."

 continue

 fi

 echo "$NGUID" >> "$NGUIDS_FILE" # Save NGUID of source volume

 echo "$(date) - Found NGUID for $DEVICE_PATH: $NGUID"

 # --- Create Snapshot via API ---

 SNAPSHOT_NAME="snapshot-$(date +%Y%m%d%H%M%S)-$counter"

 echo "$(date) - Creating snapshot '$SNAPSHOT_NAME' for NGUID '$NGUID' via REST
API..."

 RESPONSE=$(/usr/bin/curl -s -X POST --insecure -H "Accept: application/json" -H
"Content-Type: application/json" -H "Authorization: Bearer $LIGHTBITS_JWT" -d
"{\"name\": \"$SNAPSHOT_NAME\", \"sourceVolumeUUID\": \"$NGUID\"}"
"$LB_API_URL/snapshots")

 if [$? -ne 0] || ["$(echo "$RESPONSE" | /usr/bin/jq -r '.state // empty')" !=
"Creating"]; then

15

© 2025 Lightbits Labs

 echo "$(date) - ERROR: Failed to create snapshot."

 echo "$(date) - API Response: $RESPONSE"

 exit 1

 fi

 CREATED_SNAPSHOT_UUID=$(echo "$RESPONSE" | /usr/bin/jq -r '.UUID // empty')

 echo "$CREATED_SNAPSHOT_UUID" >> "$SNAPSHOT_FILE"

 echo "$(date) - Success! Snapshot '$SNAPSHOT_NAME' (UUID: $CREATED_SNAPSHOT_UUID)
has been created."

 ((counter++))

done

echo "$(date) - All snapshots initiated."

echo "--
-----------------------"



3.1.2 Second Section

Now that the snapshots are created, the second session will use the snapshot UUIDs as input to make the
clones from. This script describes the second phase of the process.

## Phase 2: Create all cloned volumes

echo "$(date) - --- PHASE 2: Starting cloned volume creation ---"

SNAPSHOT_UUIDS=($(cat "$SNAPSHOT_FILE"))

16

© 2025 Lightbits Labs

NGUIDS=($(cat "$NGUIDS_FILE"))

if [${#SNAPSHOT_UUIDS[@]} -eq 0]; then

 echo "$(date) - ERROR: No snapshots were successfully created to clone from."

 exit 1

fi

HOST_NQN=$(sudo cat /etc/nvme/hostnqn 2>/dev/null)

if [-z "$HOST_NQN"]; then

 echo "$(date) - ERROR: Could not retrieve the host NQN."

 exit 1

fi

clone_counter=1

Loop through snapshot UUIDs and corresponding original NGUIDs

for i in "${!SNAPSHOT_UUIDS[@]}"; do

 CREATED_SNAPSHOT_UUID=${SNAPSHOT_UUIDS[$i]}

 CURRENT_NGUID=${NGUIDS[$i]}

 echo "$(date) - Waiting for snapshot '$CREATED_SNAPSHOT_UUID' to become
Available..."

 STATE="Creating"

 TIMEOUT=60

17

© 2025 Lightbits Labs

 ELAPSED_TIME=0

 while ["$STATE" != "Available"] && ["$ELAPSED_TIME" -le "$TIMEOUT"]; do

 SNAPSHOT_STATUS=$(/usr/bin/curl -s -X GET --insecure -H "Accept: application/json"
-H "Authorization: Bearer $LIGHTBITS_JWT"
"$LB_API_URL/snapshots/$CREATED_SNAPSHOT_UUID")

 STATE=$(echo "$SNAPSHOT_STATUS" | /usr/bin/jq -r '.state // empty')

 sleep 2

 ELAPSED_TIME=$((ELAPSED_TIME + 2))

 done

 if ["$STATE" != "Available"]; then

 echo "$(date) - ERROR: Timeout reached. Snapshot did not become Available within
$TIMEOUT seconds."

 exit 1

 fi

 echo "$(date) - Snapshot is now Available."

 # --- Retrieve Configuration for Clone Volume ---

 echo "$(date) - Getting original volume size and replica count (NGUID:
$CURRENT_NGUID)..."

 VOLUME_INFO=$(/usr/bin/curl -s -X GET --insecure -H "Accept: application/json" -H
"Authorization: Bearer $LIGHTBITS_JWT" "$LB_API_URL/volumes/$CURRENT_NGUID")

 ORIGINAL_SIZE=$(echo "$VOLUME_INFO" | /usr/bin/jq -r '.size // empty')

 ORIGINAL_REPLICAS=$(echo "$VOLUME_INFO" | jq -r '.replicaCount // empty')

18

© 2025 Lightbits Labs

 ORIGINAL_PROJECT_NAME=$(echo "$VOLUME_INFO" | jq -r
'.projectName // empty')

 ORIGINAL_COMPRESSION=$(echo "$VOLUME_INFO" | jq -r '.compression // empty')

 # Check if necessary info was retrieved

 if [-z "$ORIGINAL_SIZE"] || [-z "$ORIGINAL_REPLICAS"]; then

 echo "$(date) - ERROR: Could not retrieve original volume size or replica
count for NGUID $CURRENT_NGUID."

 exit 1

 fi

 NEW_VOLUME_NAME="volume-from-snapshot-$(date +%Y-%m-%d-%H%M%S)-$clone_counter"

 echo "$(date) - Creating new volume '$NEW_VOLUME_NAME' from the snapshot..."

 # API call uses fetched properties (since you included them)

 VOLUME_RESPONSE=$(/usr/bin/curl -s -X POST --insecure -H "Accept: application/json"
-H "Content-Type: application/json" -H "Authorization: Bearer $LIGHTBITS_JWT" -d
"{\"name\": \"$NEW_VOLUME_NAME\", \"sourceSnapshotUUID\": \"$CREATED_SNAPSHOT_UUID\",
\"size\": \"$ORIGINAL_SIZE\", \"replicaCount\": $ORIGINAL_REPLICAS, \"projectName\":
\"$ORIGINAL_PROJECT_NAME\", \"compression\": \"$ORIGINAL_COMPRESSION\", \"acl\":
{\"values\": [\"$HOST_NQN\"]}}" "$LB_API_URL/volumes")

 if [$? -ne 0] || ["$(echo "$VOLUME_RESPONSE" | /usr/bin/jq -r '.state // empty')"
!= "Creating"]; then

 echo "$(date) - ERROR: Failed to create a new volume."

 echo "$(date) - API Response: $VOLUME_RESPONSE"

 exit 1

 fi

19

© 2025 Lightbits Labs

 NEW_VOLUME_UUID=$(echo "$VOLUME_RESPONSE" | /usr/bin/jq -r '.UUID // empty')

 echo "$NEW_VOLUME_UUID" >> "$VOLUMES_FILE"

 echo "$(date) - Success! New volume '$NEW_VOLUME_NAME' (UUID: $NEW_VOLUME_UUID) has
been created."

 ((clone_counter++))

done

Run the discovery client to make sure the volumes are mapped to the client

sudo /usr/bin/discovery-client connect-all -t tcp -a 192.168.1.42 -q nqn.2014-
08.org.nvmexpress:uuid:9062bbb0-9b6a-47b6-be09-a9bd037dbe83

echo "$(date) - Waiting 20 seconds for the new volumes to appear on the local host..."

sleep 5

echo "$(date) - All cloned volumes created and connecting."

echo "--"



3.1.3. Third Section

Now that the clones are created and directly attached to the Veeam proxy server, the third step is to
mount the clones in the same order as they were on the Client-1 server.

## Phase 3: Create All Mountpoints (Corrected Logic)

echo "$(date) - --- PHASE 3: Starting Mountpoint Creation ---"

20

© 2025 Lightbits Labs

VOLUME_UUIDS=($(cat "$VOLUMES_FILE"))

if [${#VOLUME_UUIDS[@]} -eq 0]; then

 echo "$(date) - ERROR: No volumes were successfully created to mount."

 exit 1

fi

NEW_DEVICE_COUNT=${#VOLUME_UUIDS[@]}

mount_counter=1

--- Robust Waiting Loop ---

TARGET_DEVICE_COUNT="$NEW_DEVICE_COUNT"

ELAPSED_WAIT=0

Use a filter that reliably counts NVMe namespaces

NVME_FILTER="grep '/dev/nvme[0-9]n[0-9]'"

while [$(sudo nvme list | eval "$NVME_FILTER" | wc -l) -lt "$TARGET_DEVICE_COUNT"]
&& ["$ELAPSED_WAIT" -le 60]; do

 echo "$(date) - Status: Only $(sudo nvme list | eval "$NVME_FILTER" | wc -l) of
$TARGET_DEVICE_COUNT devices found. Waiting..."

 sleep 5

 ELAPSED_WAIT=$((ELAPSED_WAIT + 5))

done

21

© 2025 Lightbits Labs

if [$(sudo nvme list | eval "$NVME_FILTER" | wc -l) -ne "$TARGET_DEVICE_COUNT"];
then

 echo "$(date) - ERROR: Timeout reached. Expected $TARGET_DEVICE_COUNT devices,
but only $(sudo nvme list | eval "$NVME_FILTER" | wc -l) appeared."

 exit 1

fi

echo "$(date) - All $TARGET_DEVICE_COUNT cloned devices are now visible."

--- End Robust Waiting Loop ---

Get the list of the new NVMe devices (which should be ALL devices on this empty
host)

ALL_LOCAL_NVME_DEVICES=$(sudo nvme list | eval "$NVME_FILTER" | awk '{print $1}'
2>/dev/null | sort -V)

--- CRITICAL FIX: Loop through ALL devices found, as they are all new clones ---

Since ORIGINAL_DEVICE_COUNT = 0, the first device found is the first clone.

for NEW_DEVICE_PATH in $ALL_LOCAL_NVME_DEVICES; do

 MOUNT_DIR="/mnt/Client-1-Vol-$mount_counter"

 echo "$(date) - Attempting to mount '$NEW_DEVICE_PATH' to '$MOUNT_DIR' (Clone
${mount_counter})..."

 sudo /usr/sbin/mkdir -p "$MOUNT_DIR"

 # Use 'ro,nouuid' for read-only mounts that ignore duplicate UUIDs

 sudo mount -t auto -o ro,nouuid "$NEW_DEVICE_PATH" "$MOUNT_DIR"

22

© 2025 Lightbits Labs

 if [$? -ne 0]; then

 echo "$(date) - ERROR: Failed to mount '$NEW_DEVICE_PATH'. Check dmesg for
filesystem errors."

 exit 1

 fi

 echo "$MOUNT_DIR" >> "$MOUNTPOINTS_FILE"

 echo "$(date) - Successfully mounted '$NEW_DEVICE_PATH' to '$MOUNT_DIR'."

 ((mount_counter++))

done

echo "$(date) - All workflows complete. Exiting with success."

exit 0



At this point, the snapshots and clones have been created. The clones are connected to the Veeam proxy
server and mounted in the same structure as on the Client-1 server.

The original state on Client-1 server is:

/mnt/vol-1

/mnt/vol-2

On the Veeam proxy serve,r after the script has been executed, it will have the following:

/mnt/Client-1-vol-1

/mnt/Client-1-vol-2

23

© 2025 Lightbits Labs

3.2. Script to Unmount the Mountpoints
to Delete the Clones and the Snapshots
To enhance readability and comprehension, the script is logically partitioned into multiple sections. The
script created is called: DeleteVolumesSnapshots.sh

The first section involves unmounting the volumes. The second section involves deleting the snapshots.
The third section consists of deleting the volumes (clones). The fourth section is about reporting on the
previous three sections.

3.2.1. First Section

The script to unmount the volumes is as follows:

#!/bin/bash

--- CONFIGURATION ---

IMPORTANT: Replace these with your actual Lightbits environment details

PROJECT_NAME="default"

LIGHTBITS_MANAGEMENT_IP="192.168.1.42"

LIGHTBITS_API_URL="https://${LIGHTBITS_MANAGEMENT_IP}:443/api/v2/projects/$PROJECT_NAM
E"

You MUST define your Authorization token here.

Replace this placeholder with your actual Bearer Token or API Key.

AUTH_TOKEN="eyJhbGciOiJSUzI1NiIsImtpZCI6InN5c3RlbTpyb290IiwidHlwIjoiSldUIn0.eyJpc3MiOi
IvaG9tZS9kZW1vL2xpZ2h0b3MtY2VydGlmaWNhdGVzL2NlcnQtbGItYWRtaW4ta2V5LnBlbSIsInJvbGVzIjpb
InN5c3RlbTpjbHVzdGVyLWFkbWluIl0sImF1ZCI6IkxpZ2h0T1MiLCJzdWIiOiJsaWdodG9zLWNsaWVudCIsIm
lhdCI6MTc1NTE2NDQ0NywiZXhwIjoxNzg2NzAwNDQ3fQ.l2Ak3cjAUPGkt_cKkaaQF-RP_Ear6bpARyz9U-
ngDr2p57TqWgTLYZrF6coU5XK4q92R5cWt1udILGZL88dASim5mMB59Qe5OPl48t7kQwJKJf-

24

© 2025 Lightbits Labs

dcr_CInf4vJtSW1OeohSimKY5QBQD8XieFMbliuZ5K2uPAhLW1rQNmsR4WGX_ClrlJwksl5CYXTGS9L63aurJK
Tika2je995XyyNlu__Hgalh0wZCGHUwDzFHBIAJvIL-
XRk5sb8agIjMwlHH1hTCYGCt0NeRImZUa10MHVZj2ZbtN5xXXQYPsDXKjhUmnA6m-
5DHmjYgN5FyUOnB1qLoilYIDlsDsChZeD66iQ"

File paths

UUID_FILE_VOLUMES="./Volumes"

UUID_FILE_SNAPSHOTS="./Snapshots"

UUID_FILE_MOUNTPOINTS="./Mountpoints"

UUID_FILE_NGUIDS="./NGuids"

LOG_FILE="./DeleteVolumesSnapshots.log"

API Endpoints

VOLUME_ENDPOINT="/volumes"

SNAPSHOT_ENDPOINT="/snapshots"

===

0. LOG TRUNCATION AND REDIRECTION

===

The 'exec' command redirects all future stdout (1) and stderr (2) to the log file.

The '>' operator ensures the log file is CREATED or TRUNCATED (deleted) before
writing.

exec > "$LOG_FILE" 2>&1

25

© 2025 Lightbits Labs

echo
"==="

echo " Lightbits Deletion Script Started: $(date)"

echo " All subsequent output is redirected to: $LOG_FILE"

echo "==="

--- SCRIPT START ---

Basic check for the token placeholder

if ["$AUTH_TOKEN" == "<YOUR_ACTUAL_LIGHTBITS_BEARER_TOKEN>"]; then

 echo "Error: Please update the 'AUTH_TOKEN' variable in the script with your
actual token." >&2

 exit 1

fi

echo "Starting Lightbits REST API deletion process..."

Initialize global counters

TOTAL_SUCCESS=0

TOTAL_FAILURE=0

===

1. UMOUNT LOOP

===

echo ""

26

© 2025 Lightbits Labs

echo
"==="

echo " 🚀🚀 Starting umount "

echo "==="

--- Function to display script usage ---

usage() {

 echo "Usage: $0"

 echo "Reads mount points from $UUID_FILE_MOUNTPOINTS and attempts to unmount
them."

 echo "Each mount point should be on a new line in the file."

}

--- Main script execution ---

Check if the mount points file exists and is readable

if [[! -r "$UUID_FILE_MOUNTPOINTS"]]; then

 echo "Error: Mount points file '$UUID_FILE_MOUNTPOINTS' not found or is not
readable." >&2

 usage

 exit 1

fi

echo "Attempting to unmount devices listed in '$UUID_FILE_MOUNTPOINTS'..."

echo "--"

27

© 2025 Lightbits Labs

Read the file line by line

while IFS= read -r MOUNT_POINT; do

 # Skip empty lines and lines starting with '#' (comments)

 if [[-z "$MOUNT_POINT" || "$MOUNT_POINT" =~ ^[[:space:]]*#]]; then

 continue

 fi

 # Remove leading/trailing whitespace

 MOUNT_POINT=$(echo "$MOUNT_POINT" | xargs)

 # Check if the mount point is not empty after cleanup

 if [[-z "$MOUNT_POINT"]]; then

 continue

 fi

 echo "Unmounting: $MOUNT_POINT"

 # Execute the umount command

 if umount "$MOUNT_POINT"; then

 echo "✅ Successfully unmounted $MOUNT_POINT"

 else

 # Log the error and continue to the next mount point

 echo "❌ ERROR: Failed to unmount $MOUNT_POINT (return code: $?)." >&2

28

© 2025 Lightbits Labs

 # Possible reasons include: Device not mounted,
resource busy, or permission denied.

 fi

done < "$UUID_FILE_MOUNTPOINTS"

echo "--"

echo "Umount process complete."

#disconnect all the drives

sudo discovery-client disconnect-all



3.2.2. Second Section

The second section involves deleting the snapshots.

# ===

2. SNAPSHOT DELETION LOOP

===

echo ""

echo "==="

echo " 🚀🚀 Starting Snapshot Deletion "

echo "==="

if [! -f "$UUID_FILE_SNAPSHOTS"]; then

29

© 2025 Lightbits Labs

 echo "Warning: Snapshot list file
'$UUID_FILE_SNAPSHOTS' not found. Skipping snapshots."

else

 SNAPSHOT_SUCCESS=0

 SNAPSHOT_FAILURE=0

 SNAPSHOT_TARGET="${LIGHTBITS_API_URL}${SNAPSHOT_ENDPOINT}"

 echo "API Target: $SNAPSHOT_TARGET"

 while IFS= read -r UUID; do

 UUID=$(echo "$UUID" | xargs)

 if [-z "$UUID"]; then continue; fi

 echo "--- Attempting DELETE for snapshot UUID: $UUID ---"

 DELETE_URL="${SNAPSHOT_TARGET}/${UUID}"

 # Execute the DELETE request using curl

 # -s: Silent mode, -X DELETE: Method, --insecure: for self-signed certs
(remove if using proper TLS)

 # -o /dev/null -w "%{http_code}": Ensures ONLY the HTTP code is captured.

 HTTP_CODE=$(curl -s -X DELETE \

 --insecure \

 -H "Authorization: Bearer $AUTH_TOKEN" \

 -H "Content-Type: application/json" \

 -o /dev/null -w "%{http_code}" \

30

© 2025 Lightbits Labs

 "$DELETE_URL")

 # Check the HTTP status code for success (200-204 range)

 if [["$HTTP_CODE" -ge 200 && "$HTTP_CODE" -le 204]]; then

 echo "✅ Successfully deleted snapshot (HTTP $HTTP_CODE): $UUID"

 SNAPSHOT_SUCCESS=$((SNAPSHOT_SUCCESS + 1))

 else

 echo "❌ Failed to delete snapshot (HTTP $HTTP_CODE): $UUID" >&2

 SNAPSHOT_FAILURE=$((SNAPSHOT_FAILURE + 1))

 fi

 done < "$UUID_FILE_SNAPSHOTS"

 TOTAL_SUCCESS=$((TOTAL_SUCCESS + SNAPSHOT_SUCCESS))

 TOTAL_FAILURE=$((TOTAL_FAILURE + SNAPSHOT_FAILURE))

 echo "Snapshot Deletion Summary: Success: $SNAPSHOT_SUCCESS, Failed:
$SNAPSHOT_FAILURE"

fi



3.2.3. Third Section

The third section is to delete the clones:

# ===

3. VOLUME DELETION LOOP

31

© 2025 Lightbits Labs

===

echo ""

echo "==="

echo " 🗄🗄 Starting Volume Deletion "

echo "==="

if [! -f "$UUID_FILE_VOLUMES"]; then

 echo "Warning: Volume list file '$UUID_FILE_VOLUMES' not found. Skipping volumes."

else

 VOLUME_SUCCESS=0

 VOLUME_FAILURE=0

 VOLUME_TARGET="${LIGHTBITS_API_URL}${VOLUME_ENDPOINT}"

 echo "API Target: $VOLUME_TARGET"

 while IFS= read -r UUID; do

 UUID=$(echo "$UUID" | xargs)

 if [-z "$UUID"]; then continue; fi

 echo "--- Attempting DELETE for volume UUID: $UUID ---"

 DELETE_URL="${VOLUME_TARGET}/${UUID}"

 # Execute the DELETE request using curl (same logic as snapshots)

32

© 2025 Lightbits Labs

 HTTP_CODE=$(curl -s -X DELETE \

 --insecure \

 -H "Authorization: Bearer $AUTH_TOKEN" \

 -H "Content-Type: application/json" \

 -o /dev/null -w "%{http_code}" \

 "$DELETE_URL")

 # Check the HTTP status code for success (200-204 range)

 if [["$HTTP_CODE" -ge 200 && "$HTTP_CODE" -le 204]]; then

 echo "✅ Successfully deleted volume (HTTP $HTTP_CODE): $UUID"

 VOLUME_SUCCESS=$((VOLUME_SUCCESS + 1))

 else

 echo "❌ Failed to delete volume (HTTP $HTTP_CODE): $UUID" >&2

 VOLUME_FAILURE=$((VOLUME_FAILURE + 1))

 fi

 done < "$UUID_FILE_VOLUMES"

 TOTAL_SUCCESS=$((TOTAL_SUCCESS + VOLUME_SUCCESS))

 TOTAL_FAILURE=$((TOTAL_FAILURE + VOLUME_FAILURE))

 echo "Volume Deletion Summary: Success: $VOLUME_SUCCESS, Failed: $VOLUME_FAILURE"

fi



33

© 2025 Lightbits Labs

3.2.4. Fourth Section

The fourth section is the summary of the three previous sections:

# ===

3. FINAL SUMMARY

===

echo ""

echo "--- TOTAL DELETION SUMMARY ---"

echo "Total successful deletions (Snapshots + Volumes): $TOTAL_SUCCESS"

echo "Total failed deletions (Snapshots + Volumes): $TOTAL_FAILURE"

if ["$TOTAL_FAILURE" -gt 0]; then

 echo "⚠ Some items failed to delete. Check the output above for errors."

 exit 2

else

 echo "🎉🎉 All specified items processed successfully."

fi

===

4. CLEANUP SECTION

===

echo ""

echo "==="

echo " 🧹🧹 Starting Cleanup "

34

© 2025 Lightbits Labs

echo
"==="

Clean up ./Mountpoints if it was processed

 if rm -f "$UUID_FILE_MOUNTPOINTS"; then

 echo "✅ Cleaned up and deleted mountpoint list file: $UUID_FILE_MOUNTPOINTS"

 else

 echo "❌ Warning: Failed to delete mountpoint list file: $UUID_FILE_MOUNTPOINTS" >&2

 fi

Clean up ./Snapshots if it was processed

 if rm -f "$UUID_FILE_SNAPSHOTS"; then

 echo "✅ Cleaned up and deleted snapshot list file: $UUID_FILE_SNAPSHOTS"

 else

 echo "❌ Warning: Failed to delete snapshot list file: $UUID_FILE_SNAPSHOTS" >&2

 fi

Clean up ./Volumes if it was processed

 if rm -f "$UUID_FILE_VOLUMES"; then

 echo "✅ Cleaned up and deleted volume list file: $UUID_FILE_VOLUMES"

 else

 echo "❌ Warning: Failed to delete volume list file: $UUID_FILE_VOLUMES" >&2

 fi

35

© 2025 Lightbits Labs

Clean up ./NGUIDS if it was processed

 if rm -f "$UUID_FILE_NGUIDS"; then

 echo "✅ Cleaned up and deleted volume list file: $UUID_FILE_NGUIDS"

 else

 echo "❌ Warning: Failed to delete volume list file: $UUID_FILE_NGUIDS" >&2

 fi

Set final exit code

if ["$TOTAL_FAILURE" -gt 0]; then

 echo "⚠ Script completed with some failures."

 exit 2

else

 echo "🎉🎉 Script completed successfully."

 exit 0

fi



3.3. Script on the Veeam Server to Start the Script on Veeam
Proxy
The script on the Veeam server that calls the first script (GetReadyForBackup.sh) on the Veeam proxy
server is as follows:

# Backup-Client-1.ps1

$SSHCommand = "ssh root@veeamproxy /root/GetReadyForBackup.sh"

36

© 2025 Lightbits Labs

Execute the command and capture the exit code

$ExitCode = (Invoke-Expression -Command $SSHCommand 2>&1 | Select-Object -Last
1).ExitCode

Force the PowerShell script to exit with the SSH client's exit code

exit $ExitCode



3.4. Script on the Veeam Server to Start the Script to
Unmount and Delete the Snapshots
The script on the Veeam server that calls the delete script (DeleteVolumesSnapshots.sh) on the Veeam
proxy server is as follows:

# CleanUp-Client-1.ps1

$SSHCommand = "ssh root@veeamproxy /root/DeleteVolumesSnapshots.sh"

Execute the command and capture the exit code

$ExitCode = (Invoke-Expression -Command $SSHCommand 2>&1 | Select-Object -Last
1).ExitCode

Force the PowerShell script to exit with the SSH client's exit code

exit $ExitCode



37

© 2025 Lightbits Labs

4. Creating the Backup Job on
the Veeam Server

It is now time to configure the backup job in Veeam by using the scripts on the local server. In the top
menu bar, click on Home. Then, click on the Backup Job icon and select the Linux computer.

The following screen appears:

Click on Next. In the following screen, please provide a Name for the backup job. In this example, it is
called: Veeamproxy

38

© 2025 Lightbits Labs

Click on Next. In the following screen, the Veeam proxy server needs to be added.

Click the Add button and select 'Individual computer'. Fill in the hostname and the admin credentials to
connect to the Veeam proxy server. For this exampl,e the screen will look like this:

39

© 2025 Lightbits Labs

Click OK and then click Next. In the Backup mode screen, the Volume level backup is the one required.
Select Volume level backup and click on Next.

40

© 2025 Lightbits Labs

In the Objects screen, the mount points need to be selected from the
Veeam proxy server. In the script to create the snapshots, the mount points in this example are:
/mnt/Client-1-vol-1 and
/mnt/Client-1-vol-2. Click on Add and select Mount point. Add the mount points. In this example, it looks
as follows:

Click on Next. In the Storage screen, the Garage backup repository is directly selected because there is
currently only one backup repository. In this screen, click on Advanced.

41

© 2025 Lightbits Labs

In the Advanced Settings screen, click the Scripts tab. In the Job scripts section, tick both Before the job
and After the job. When the jobs are enabled, you can browse and select the scripts from the Veeam
server. In this example, the screen will look as follows:

42

© 2025 Lightbits Labs

Before the job, the script is executed, which in turn calls the
GetReadyForBackup.sh script on the Veeam proxy server. After the job is executed, the script is executed,
which in turn calls the DeleteVolumesSnapshots.sh script on the Veeam proxy server. Click OK, and then
click Next to proceed to the Guest Processing screen. On the screen, simply click on Next. In the Schedule
screen, you can schedule the job; however, this step is skipped in this example. Click on Apply. The final
screen is the summary. The summary for this example looks as follows:

Simply click Finish, and the backup job will be created.

43

© 2025 Lightbits Labs

5. Executing the Backup Job
Now that the backup job has been created, hover over the Veeam proxy backup job, right-click on it, and
select Start. The job progress will indicate the actions taken. At this point, you should review a successfully
completed backup job.

6. Restore the Files Directly to the Original
Server Client-1
CommVault allows users to restore files directly from the Veeam proxy server back to the Client-1 server.
Guidance follows on how to restore individual files on the original host.

44

© 2025 Lightbits Labs

In the top menu bar, click on Home. Then, click "Backups" in the left menu bar, and Object Storage will
appear. Click on the Object Storage. In the middle pane, select Veeamproxy. The screen will look like this:

Right-click on the lowest Veeamproxy and select Restore guest files, and click on Linux and other. The
following screen appears:

45

© 2025 Lightbits Labs

 Click on Next. The following screen will appear:

Click on Next. The following screen will appear:

46

© 2025 Lightbits Labs

In the “Restore” field, input a reason. Click on Next. The following screen will appear:

This screen provides a summary. To restore the individual files to another server, click on Browse. The
following screen will appear:

47

© 2025 Lightbits Labs

Select the file you want to restore. Click on the "Restore to” button. The following screen appears:

Open the Manual Added and select Client-1. Click the OK button. The target directory needs to be
selected, and in this example /mnt/vol-1 is the target directory. Click on the OK button.

48

© 2025 Lightbits Labs

Veeam displays the restore progress on the screen below.

Once the restore is complete, click the Close button.

49

© 2025 Lightbits Labs

7. Conclusion
Veeam serves as the essential bedrock for modern, comprehensive data resilience, offering an array of
capabilities that extend far beyond traditional backup. Its core strengths lie in the Veeam Data Platform’s
ability to deliver rapid, reliable recovery, cyber resilience, and unparalleled flexibility across virtual,
physical, and multi-cloud environments. Veeam provides built-in immutable backups, advanced AI-
powered threat detection, and automated orchestration, ensuring crucial capabilities that enable
organizations to confidently recover from any incident—especially ransomware. This focus on minimizing
downtime and achieving near-zero Recovery Time Objectives (RTOs) makes Veeam the trusted software
layer for maintaining business continuity and security in an increasingly volatile digital landscape.

Lightbits Labs revolutionizes data infrastructure by delivering high-performance, software-defined block
storage natively designed with NVMe over TCP. Lightbits’ unique advantages are centered on its ability to
provide consistent, sub-millisecond tail latency and massive throughput over standard, cost-effective
Ethernet infrastructure, eliminating the complexity and expense of specialized Fibre Channel or RDMA
networks. By enabling the complete disaggregation of compute and storage, Lightbits storage software
allows organizations to scale performance and capacity independently. This leads to dramatically improved
resource utilization, simplified storage management, and a significant reduction in Total Cost of Ownership
(TCO) compared to legacy shared storage arrays.

The integration between Veeam and Lightbits software, as illustrated here, results in a backup and restore
solution that delivers superior business value, transforming storage from a passive system into an ultra-
fast, high-performance asset. By utilizing Lightbits’ ultra-low latency NVMe/TCP storage fabric as the
primary backup target, organizations can accelerate every critical operation: backup jobs run faster, and,
more importantly, Instant Recovery operations are performed at near-production speeds. This
combination ensures that the robust resilience, security, and orchestration of the Veeam Data Platform are
optimized by the lightning-fast performance of Lightbits block storage. The result is a future-proof
architecture that dramatically tightens RTOs and RPOs, streamlines storage operations, and guarantees
instant, reliable recovery, elevating data protection to a true competitive advantage.

50

© 2025 Lightbits Labs

About Lightbits Labs
Lightbits Labs® (Lightbits) invented the NVMe over TCP protocol and offers best-in-class software-defined block
storage that enables data center infrastructure modernization for organizations building a private cloud or cloud
service. Built from the ground up for low consistent latency, scalability, resiliency, and cost-efficiency, Lightbits
software delivers the industry’s best price-performance value for real-time analytics, transactional, and AI/ML
workloads. Lightbits Labs is backed by enterprise technology leaders [Cisco Investments, Dell Technologies Capital,
Intel Capital, Lenovo, and Micron] and is on a mission to deliver the fastest and most cost-efficient data storage for
performance-sensitive workloads at scale.

 www.lightbitslabs.com info@lightbitslabs.com

US Offices
1830 The Alameda,
San Jose, CA 95126,
USA

Israel Office
17 Atir Yeda Street,
Kfar Saba 4464313,
Israel

The information in this document and any document referenced herein is provided for informational purposes only, is
provided as is and with all faults and cannot be understood as substituting for customized service and information that
might be developed by Lightbits Labs ltd for a particular user based upon that user’s particular environment. Reliance
upon this document and any document referenced herein is at the user’s own risk.

The software is provided "As is", without warranty of any kind, express or implied, including but not limited to the
warranties of merchantability, fitness for a particular purpose and non-infringement. In no event shall the contributors
or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or
otherwise, arising from, out of or in connection with the software or the use or other dealings with the software.

Unauthorized copying or distributing of included software files, via any medium is strictly prohibited.

COPYRIGHT© 2025 LIGHTBITS LABS LTD. - ALL RIGHTS RESERVED LBWP18/2025/11

http://www.lightbitslabs.com/
http://www.lightbitslabs.com/
http://www.lightbitslabs.com/

	1. Introduction
	2. Veeam Backup Repository
	2.1. Adding an S3-Compatible Backup Repository in Veeam
	2.1.1 S3-Compatible Repository Configuration
	2.1.2 Credential Configuration

	3. Scripting
	3.1. Script to Create the Snapshots, Clones and Mountpoints
	3.1.1. First Section
	3.1.2 Second Section
	3.1.3. Third Section

	3.2. Script to Unmount the Mountpoints to Delete the Clones and the Snapshots
	3.2.1. First Section
	3.2.2. Second Section
	3.2.3. Third Section
	3.2.4. Fourth Section

	3.3. Script on the Veeam Server to Start the Script on Veeam Proxy
	3.4. Script on the Veeam Server to Start the Script to Unmount and Delete the Snapshots

	4. Creating the Backup Job on the Veeam Server
	5. Executing the Backup Job
	6. Restore the Files Directly to the Original Server Client-1
	7. Conclusion
	About Lightbits Labs

