Q@ y lightbits

Simplifying Backup, Recovery, and
Continuous Business Resilience in
Kubernetes

Implementation guide for data protection in Kubernetes with Velero,
Garage, and Lightbits

August 2025

Abstract

This detailed abstract goes beyond simple installation, guiding you through the essential steps of
connecting Velero and Garage to work flawlessly with your existing Kubernetes and Lightbits
infrastructure. We will demonstrate how to execute backups and restores with confidence,
ensuring that all components work together seamlessly. By following this approach, you can
protect your critical application data, simplify disaster recovery, and maintain business continuity -
all while leveraging the performance and efficiency of Lightbits. Get ready to transform your data
protection strategy from a complex challenge into a streamlined, automated process.

© 2025 Lightbits Labs

@y lightbits

Table of Contents

1. Introduction 3
2. Installing and Configuring the Garage Object Store 4
2.1. Installing Docker 4

2.2 Garage Container 4

2.3 Garage Configuration 5

2.4 Configuring the Garage Cluster 6

2.5 Configuring the Credentials for the Backup Bucket 8

2.6 Installing awscli 10

3. Installing and Configuring Velero 12
4. Pods and Their Associated PVC and Class 16
5. Required Changes for the Pod or PVC 18
6. Back Up Kubernetes with volumeMode FileSystem 19
7. Restore Kubernetes with volumeMode FileSystem 21
8. Back Up Kubernetes with volumeMode Block 22
9. Restore Kubernetes with volumeMode Block 23
10. Restoring Just One Pod on the Shared PVC 25
11. Conclusion 26
About Lightbits Labs..........ccueiiiiirii e 27
2

© 2025 Lightbits Labs

@y lightbits

1. Introduction

In this white paper, we will show you how to have a fully integrated backup and restore solution for
Kubernetes, running its Physical Volume Claims (PVC) on top of Lightbits’ software-defined storage. We
took Velero as the backup and restore engine, and Garage as the AWS-compliant S3 object solution to store
backups and retrieve restores. The paper is focused on the Velero and Garage installs and how to make them

work together.

The diagram below illustrates the implementation architecture.

— %VELERO —

Backup & Restore

Creating backups and
fetching the data

Applications
kubernetes

v

PVC mounts to
external C5l storage
& creating snapshots

Block and object storage

&y lightbits

Snapshot

To make the configuration easy, all the nodes were running Alma Linux 9.6.

¥

Storing and retrigving
the backup objects

!
/.’" Garage

@y lightbits

2. Installing and Configuring the Garage
Object Store

To run Garage as an object store, we will need to have at least three nodes. On these nodes, Docker must be
installed and SELinux must be permanently disabled. To disable SELinux temporarily and permanently, use
the following commands:

Shell

Temporarily:

sudo setenforce 0

Permanently:

sudo vi /etc/selinux/config

look for SELINUX=permissive and change to
SELINUX=disabled

Save the file by <Esc>:wq!

2.1. Installing Docker

Shell
sudo dnf install -y docker

2.2 Garage Container

The next thing to do is to pull the Garage container:

Shell
sudo docker pull dxflrs/garage:v2.0.0

Garage works with an rpc secret between the nodes. The rpc secret should be created as follows:

4

© 2025 Lightbits Labs

@y lightbits

Shell

openssl rand -hex 32

Output: 33f14e516d4f9f48f8bdb210c1e6145chacefdd08f33045a6d97fb66eb3a35a2

2.3 Garage Configuration

Garage should be configured before it can be installed. The /etc/garage.toml file should be created and has
the following contents:

Shell

metadata_dir = "/var/lib/garage/meta"
data_dir = "/var/lib/garage/data"
db_engine = "1mdb"
metadata_auto_snapshot_interval = "6h"

replication_factor = 3
compression_level = 2
rpc_bind_addr = "garagel1:3901"

rpc_public_addr = "garage1:3901"
rpc_secret = "33f14e516d4f9f48f8bdb210c1e6145chacefdd08f33045a6d97fb66eb3a35a2"

[s3_api]

s3_region = "garage"
api_bind_addr = "garagel:39600"
root_domain = ".s3.garage"
[s3_web]

bind_addr = "garage1:3902"
root_domain = ".web.garage"
index = "index.html"

Make sure that the rpc is copied as it was created in the configuration file.

Perform the steps above for the second and the first node. Make sure that the server name is changed, in the
above example, from garage1 to garage2 and to garage3.

Now that all the nodes are configured, we can start each node by itself:

© 2025 Lightbits Labs

@y lightbits

Shell

docker run -d \

--name garaged \

--restart always \

--network host \

-v /etc/garage.toml:/etc/garage.toml \

-v /var/lib/garage/meta:/var/lib/garage/meta \
-v /var/lib/garage/data:/var/lib/garage/data \
dxflrs/garage:v2.0.0

We can now create an alias and add it to the .bashrc file.

Shell

vi ~/.bashrc
add the following line at the bottom
alias garage="docker exec -ti garaged /garage"

And run directly after saving the file:
source ~/.bashrc

Next, we can execute the following command to see the status of each Garage node:

Shell

garage status

Before we add the nodes to the cluster, the firewalld must be updated with a new port. Run the following:

Shell

sudo firewall-cmd --zone=public --add-port=3906/tcp --permanent
sudo firewall-cmd --zone=public --add-port=3901/tcp --permanent
sudo firewall-cmd --zone=public --add-port=3902/tcp --permanent
sudo firewall-cmd --reload

2.4 Configuring the Garage Cluster

Each Garage node can now be added to the Garage cluster; each node has its own node ID. In the example
below, | used garage1, to add node garage2 and add node garage3.

© 2025 Lightbits Labs

y 4

@y lightbits

Shell

Go to node garage2 and provide the command
garage node id

output:
e673e5139dacab33e1f1e6387e0704d546bc38f652b571de7f118023f8ff505d@garage?:3901

Go to node garagel and provide the command
garage node connect
e673e5139daca633e1f1e6387e0704d546bc38f652b571de7f118023f8ff505d@garage2 :3901

Go to node garage3 and provide the command

garage node id
cec691cc5dc56145519fb87ddef29aecB3ec8c1574e88f6c8d982ebcf898245a@garage3 :3901

output:
garage node connect
cec691cc5dc56145519fb87ddof29aecB3ec8c1574e8816c8d982ebcf898245a@garagel :3901

To check that all the nodes are added to the cluster, provide the following command on garage1:

Shell

garage status

Output:

==== HEALTHY NODES ====

D Hostname Address Tags Zone Capacity DataAvail Version
127ee075ef25f94e garagel 192.168.1.216:3901

cec691cc5dc56145 garage3 192.168.1.218:3901

e673e5139daca633 garage2 192.168.1.217:3901

Garage needs a layout for the Tags, Zone, and Capacity. Provide the following command:

Shell

garage layout assign 127e -z gar1l -c 960G -t garagel
garage layout assign e673 -z gar2 -c 960G -t garage2
garage layout assign cec6 -z gar3 -c 90G -t garage3

© 2025 Lightbits Labs

-\ . .
W v lightbits
Verify that it is set up correctly:

Shell

garage layout show

output:

==== CURRENT CLUSTER LAYOUT ====

ID Tags Zone Capacity Usable capacity
127ee075ef25f94e [garagel] gar1l 90.0 GB 90.0 GB (100.0%)
cec691cc5dc56145 [garage3] gar3 90.0 GB 90.0 GB (100.0%)
e673e5139dacab33 [garage2] gar2 90.0 GB 90.0 GB (100.0%)

Zone redundancy: maximum

Current cluster layout version: 1

Make the layout permanent:

Shell
garage layout apply --version 1

Create the storage bucket in Garage:

Shell

garage bucket create backup

To verify:

Shell
garage bucket list

Output:
ID Created Global aliases Local aliases
5b58e473d4140ec4 2025-08-20 backup

2.5 Configuring the Credentials for the Backup Bucket

The credentials for the backup bucket should be created with the following command:

© 2025 Lightbits Labs

y 4

@y lightbits

Shell

garage key create backup

Output:

==== ACCESS KEY INFORMATION ====

Key ID: GK89bf439c5971daabb685ea75

Key name: backup

Secret key:
32¢1dab9605c18640781c1af91f7720d9684bb417a0db1aa7de9fa46167562b6
Created: 2025-08-20 07:44:17.131 +00:00

Validity: valid

Expiration: never

Can create buckets: false

To verify:
Shell
garage key list
Output:

ID Created Name Expiration
GK89bf439c5971daabb685ea75 2025-08-20 backup never

Fetch the access key for the backup bucket:

Shell
garage key info backup

Output:

==== ACCESS KEY INFORMATION ====

Key ID: GK89bf439¢c5971daabb685ea75

Key name: backup

Secret key: (redacted)

Created: 2025-08-20 07:44:17.131 +00:00
Validity: valid

Expiration: never

Can create buckets: false

==== BUCKETS FOR THIS KEY ====

© 2025 Lightbits Labs

@y lightbits

Permissions ID Global aliases Local aliases
RWO 5b58e473d4140ec4 backup

With the above keys, we can configure the bucket backup for access:

Shell

garage bucket allow --read --write --owner backup --key backup

To verify:

Shell
garage bucket info backup

Output:

==== BUCKET INFORMATION ====

Bucket:
5b58e473d4140ec4b35962623c899e2fecbcadBcB15cc442e6181e2f347678ef
Created: 2025-08-20 07:43:17.653 +00:00

Size: 0 kiB (@ KB)

Objects: 0

Website access: false
Global alias: backup

==== KEYS FOR THIS BUCKET ====
Permissions Access key Local aliases
RWO GK89bf439c5971daabb685ea75 backup

2.6 Installing awscli

For Velero to communicate with the Garage object store, you will need to install the awscli. Garage is
compliant with the AWS S3 command set, and this is the easiest way to communicate from Velero to Garage:

© 2025 Lightbits Labs

@y lightbits

Shell

sudo dnf install -y pip
python -m pip install --user awscli

After the installation, create the configuration file for awscli:

Shell

vi ~/.awsrc

export AWS_ACCESS_KEY_ID=GK89bf439c5971daabb685ea75

export AWS_SECRET_ACCESS_KEY=32c1dab9605c18640781c1af91f7720d9684bb417a0db1aa7de9fa46167562b6
export AWS_DEFAULT_REGION='garage'

export AWS_ENDPOINT_URL='http://garagel1:3900'

Copy the ~/awsrc to garage2 and garage3, and change the AWS_ENDPOINT_URL to garage2 and garage3.

To be able to connect to the Garage storage, enter the following command:

Shell

source ~/.awsrc

This will allow you to connect with the Garage object store with the AWS S3 command set. To verify, enter
the following:

Shell

aws s3 1s

Output:
2025-08-20 09:43:17 backup

© 2025 Lightbits Labs

@y lightbits

3. Installing and Configuring Velero

In this setup, we have used the Velero from Github. To download the Velero software, download the tar file
from this location: https://github.com/vmware-tanzu/velero/releases
In this case, we have used the tar file: velero-v1.16.2-1inux-amd64.tar.gz.

The next thing to do is to extract this file:

Shell

tar -xvf velero-v1.16.2-1inux-amd64.tar.gz
This will create the directory velero-v1.16.2-1linux-amd64

Please go to that directory, all the configurations will be stored here.

Createthe credentials-velero file-toaccess the Garage object store - with the following contents:

Shell
vi ./credentials-velero

aws_access_key_id = GK89bf439c¢5971daabb685ea75
aws_secret_access_key =
32c1dab9605c18640781c1af91f7720d9684bb417a0db1aa7de9fa46167562b6

aws_default_region = 'garage'
aws_endpoint_url = 'http://garagel:3900'

The next step is to install the kubectl CLI to connect to the already existing Kubernetes cluster:

Shell
sudo dnf install -y kubelet kubeadm kubectl --disableexcludes=kubernetes

Then, configure the ~ . kube/config file with the correct certificates to make sure that Velero can

connect to the Kubernetes cluster.

© 2025 Lightbits Labs

https://github.com/vmware-tanzu/velero/releases

@y lightbits

For example:

Shell
vi ~.kube/config

apiVersion: vi
clusters:
- cluster:
certificate-authority-data:
LSetLST1CRUAJTiBDRVJUSUZJQBFURSOtLSOtCk1JSUJkakNDQVIYyZOF3SUJBZO1CQURBSBJNZ3Foa2p
PUFFRREFgQWpNUBV3SHdZRFZRUUREQmhyTTNNdGMyVnkKZG1WeUxXTmhRREUzTkRNNE56azFPRE13SG
hjTk1qVXdOakF5TVRVMU16QXpXaGNOTXpVd@5UTXhNVFUXTXpBegpXakFqTVNFdOh3WURWUVFEREJoc
k@zTXRjM1Z5ZGT1WeUxXTmhRREUzTkRNnNES6azFPRE13V1RBVEJNY3Foa2pPC1BRSUJCZ2dxaGtqT1BR
TUJCdBSDQUFUaHp3aWVudWJiVekrZThyMFRQMk 5GKzdkUGtFUjRnZFRKbGZYCcWNIYVgKY211dEp6aFo
3d1ZweE5SU1BCV1g4dCtjMmJONCISaGd2VktRYzFZWUo@SmxvME13UURBTOJNT1ZIUThCQWY4RQpCQU
1DQXFRABR3WURWUjBUQVFILOJBVXdBdOVCL3pBZEJNT1ZIUTRFRmdRVTJYVFJDbG9Ta1JUZUS5yUmNDR
FFPCm4xZmhkS113Q2dZSUtvWk16ajBFQXdJRFJ3QXdSQU1NQTVpLBS5aUERjcj1ZbWI4d1JDK1JRWGtt
aUZ2YzhtVOwKTVg4QVR1TmhET1VDSUNtTm9zR3gvc2JsOWpvVUFGUzZmN2MzQUXLOGOVVGJILzZNSYng
zaEV6elUKLSOtLST1FTkQgQOVSVELGSUNBVEUtLSOtLQo=
server: https://192.168.1.32:6443
name: default
contexts:
- context:
cluster: default
user: default
name: default
current-context: default
kind: Config
preferences: {}
users:
- name: default
user:
client-certificate-data:
LSetLS1CRUAJTiBDRVJUSUZJQBFURSOtLSOtCk1JSUJrVENDQVR1ZOF3SUJBZO1JQVRGUBhrWUSMWEV
3Q2dZSUtvWk16ajBFQXdJdO16RWhNQjhHQTFVRUF3d1kKYXpOekxXTnNhV1Z1ZEMxallVQXhOelEOTO
RjNUSUZ3pNQjRYRFRIMUTEWXdNakUxT1RNd@OxbThEVEKYTURZdwpNakUxT1RNdBBxb3dNREVYTUJVR
OExVUVDaE1PYzNsemRHVNRPbTFoYzNSbGNuTXhGVEFUQmdOVkJBTVRESE41CmMzUmxiVHBoWkcxcGJq
Q1pNQk1HQN1xR1NNND1BZBVHQONXRTNNND1BdOVIQTBJQUJEYkw1Skc2UUhsNW1zZkUKY@5Pd2dNd2V
GRGRHMUYvdHV6VDBBUHIOSG1 jdnFEK1FNMHV4TE43UVdrelQ2YWo5Y20zUFNxeXhaa21vTHVQcgpl0S
tTTD1DalNEQkdNQTRHQTFVZER3RUIvd1FFQXdJRMOEQVRCZO5WSFNVRUREQUtCZ2dyQmdFRkJRYBRBa
kFmCkJnT1ZIUOT1FRORBV2dCUWt2eVN6OFZPOTRSTjhhRWZ0OcGdtcz1RcWR6ekFLQmdncWhrak9QUVFE
QWJOSUFEQkYKQW1FQXJFelo4cGFOL2xGeWB3a2xCWmw4STEBb2Xx0L2EVVXpVZVUrNURYMO8rL1FDSUR
XZkpiTWZFWndhZWNzVApmVngweE15SWg3WnJkMEI3cFIObHFtakJ2WE1hCi0tLSOtRUSEIENFULRJRkK
1DQVRFLS@tLSOKLSBtLST1CRUAJTiBDRVJUSUZJQBFURSOtLSOtCk1JSUJkekNDQVIYZOF3SUJBZO1CQ
URBS@JNnZ3Foa2pPUFFRREFqQWpNUBY3SHAZRFZRUUREQmhy TTNNdFkyeHAKW1cTMEXXTmhRREUZTKRN

13

-

@y lightbits

NE56azFPRE13SGhjTk1qVXd0akF5TVRVMU16QXpXaGNOTXpVdB5UTXhNVFUxTXpBegpXakFqTVNFdeh
3WURWUVFEREJock@zTXRZMnhwW1c1MEXXTmhRREUzTkRNnNE56azFPRE13V1RBVEJNnY3Foa2pPC1BRSU
JCZ2dxaGtqT1BRTUJCAB5DQUFRNGx4Sz1iRkdOOE92TUNNbSt5VO5TNEFCamNoSnBKc1BqZmM1beM2Q
XMKMW5Yb3EyWU1zRSs1TOcyY3FtbHQWOEpBeXVtekJyejhzd2tjdWgvenZhM3RVME13UURBTOJNT1ZI
UThCQWY4RQpCQU1DQXFRAOR3WURWUjBUQVFILOJBVXdBdOVCL3pBZEJNT1ZIUTRFRmMdRVUpMOGtzLOZ
UdmVFVGZHaEh6YV1KCnJQVUtuYzh3Q2dZSUtvWk16ajBFQXdJRFNBQXdSUU1oQU1UZm5iT202Q1R5MV
VmROpUMj JSNGt5aWlLcGE3dzUKbk13NkhZT3YrU284QW1BbFNRCkNWTTJ4ZEVMYW9qQzR5TGxVVXVIY
T10ejBSMG1FbmNZeWo2MOx3dz09CiBtLSOtRUSEIENFUIRJRk1DQVRFLSOtLSOK
client-key-data:

LSOtLSTCRUAJTiBFQyBQUKk1IWQVRFIEtFWSOtLSOtCk1IYONBUUVFSUFGYZzV5RjVyNed1Wi9hcXdUVeR
WMUZtQ1ZYTmNZbOx3N1VCZWtCY2EvbzRvQWIHQBNXRTNNNDKKQXdFSGI9VUURRZBFFTNN2a2ticEF1WG
1LeDhSdzA3QOF6QjRVTjBiVVgrMjdOUFFBK3ZnZUp5K29QNUF6UzdFcwozdEJhVE5QCcHFQMX1QYz1Llc
kxGbVNhZ3UBK3Q3MzVJdjBBPTOKLSOtLS1FTkQgRUMgUFJJVKFURSBLRVktLSOtLQo=

Verify that kubectl is working correctly:

Shell
kubectl get namespaces

Output:

NAME STATUS AGE
acme Active 84d
default Active 84d
kube-node-lease Active 84d
kube-public Active 84d
kube-system Active 84d
lightkube Active 24d

Now that we have verified access to Kubernetes and Garage, we can install the Velero containers in
Kubernetes. The installation will enable the creation of backups for filesystems and for PVCs with external
CSl snapshot providers. There are two plugins provided: the first is for the filesystem and the second is for
the external CSl snapshot provider.

The —use-node-agent optionis for the filesystem. The —features=EnableCST optionisfor the
external CSl snapshot provider.

Use the following command:

© 2025 Lightbits Labs

@y lightbits

Shell

velero install \

--provider aws \

--plugins
velero/velero-plugin-for-aws:v1.2.1,velero/velero-plugin-for-csi:v0.4.0 \
--bucket backup \

--secret-file ./credentials-velero \

--use-volume-snapshots=true \

--backup-location-config

region=garage, s3ForcePathStyle="true", s3Url=http://192.168.1.216:3960 \
--use-node-agent \

--features=EnableCSI

This will create a new namespace in Kubernetes called velero.

Verify this as follows:

Shell

kubeclt get namespaces

Output:

NAME STATUS AGE
acme Active 84d
default Active 84d
kube-node-lease Active 84d
kube-public Active 84d
kube-system Active 84d
lightkube Active 24d
velero Active 4d19h

Verify the contents of the namespace velero:

Shell

kubectl get pods -n velero

NAME READY STATUS RESTARTS AGE
node-agent-rzm4z 1/1 Running 3 (125m ago) 4d19h
velero-64b59f5cd5-nbs8r 1/1 Running 2 (125m ago) 4d1h

Velero is now ready to create backups and restore.

© 2025 Lightbits Labs

@y lightbits

4. Pods and Their Associated PVC and
Class

To understand how applications connect to both file systems and block volumes, it's essential to grasp the
role of Storage Classes and Snapshot Classes. A Storage Class defines the properties of the underlying
storage, determining whether an application will use a shared file system or a dedicated block volume.
Meanwhile, a Snapshot Class governs the process of creating point-in-time copies of these volumes. The
execution of these snapshots is managed by Kubernetes through CSI. Depending on the volume mode in
Kubernetes for the PVC the snapshot will be created internally or externally on the storage, ensuring
consistent and reliable backups.

The following is a diagram illustrating the filesystem example:

J'—’ %VE_ERO]

Creating backups and
fetching the data

Backup & Restore

Pod

acme-fs-pod

Applications

kubernetes

h

Storage class:
acme-fs-sc Storing and retrieving
Snapshot class: bl || Ly the backup objects
Internal Kubernetes

-~ ™y

Snapshot i

Block and object storage ;; llghtb|t5 Q Garage

[|
1 |
| |
: : Backup object

b H acme-fs-pod-backup-5
acme-fs-pvc

© 2025 Lightbits Labs

A Y .
W v lightbits
The following diagram is an illustration of the block volume example:

— %vELERo -

Backup & Restore
Creating backups and

fetching the data

rwx-podi
rwx-pod2

Applications

kubernetes

v

Storage Class:
example-sc
Snapshot Class:

example-snapshot-sc

Black and object storage

@ y lightbits

Snapshot

h

Storing and retrieving
the backup objects

|
/>~ Garage

Backup object
rwx-block-backup-7

@y lightbits

5. Required Changes for the Pod or PVC

To make backup creation easier, it is essential to configure labeling on the PVC and the pods, and to provide
annotations for Velero for which plugin to use. For the filesystem, we created the acme-fs-pod label for

the pod running in the namespace acme.

To apply the label and the annotation for the filesystem, adjust your yaml file for the pod with the new
labeling and annotation:

Shell
metadata:
name: "acme-fs-pod"
annotations:
backup.velero.io/backup-volumes: test-mnt
labels:

app: acme-fs-pod

To apply the label and the annotation for block, adjust your yaml file for the PVC with the new labeling and
annotation:

Shell

metadata:
name: rwx-pvc
labels:
app: rwx-pods
annotations:
velero.io/csi-backup-snapshot-class: "example-snapshot-sc" # Note this is
the snapshot class which is configure in kubernetes to create a snapshot on
Lightbits.

To apply the label and the annotation for block, adjust your yaml file for the pod with the new labeling for
rwx-podl:

Shell

metadata:

© 2025 Lightbits Labs

@y lightbits

name: "rwx-pod1l
labels:
app: rwx-pods

To apply the label and the annotation for block, adjust your yaml file for the pod with the new labeling for

rwx-pod2:

Shell

metadata:
name: "rwx-pod2"

labels:
app: rwx-pods

We have now created two app names for the backup and restore - namely acme-fs-pod and the combined
rwx-pods. When we create the backup for the app rwx-pods, it will combine the external PVC and the
mounted pods on it, as one backup target.

6. Back Up Kubernetes with volumeMode
FileSystem

The diagram below illustrates what happens when we create a backup with Velero from a filesystem that is
externally attached with a PVC.

#F S Garage @ VELERO -& L T/ lightbits

kubernetes

« "l Pod: acme-fs-pod
backup- |~ 4 backup process " 3 Mounted filesystem !
object ™

Backup: Filesystem volumeMode in Kubernetes

]
r

PVC volume on Lightbits exposed to Kubernetes; Kubernetes mounts the PVC to a directory.
Velero requests a backup from Kubernetes.

Velero fetches all related information from Kubernetes.

Velero stores the backup information in the Garage s3 object store.

SIS -

© 2025 Lightbits Labs

-

@y lightbits

By using the app as a label, it is then easy to create a backup for app=acme-fs-pod orfor

app=rwx-pods.

Shell

velero backup create acme-fs-pod-backup-5 --selector app=acme-fs-pod
--include-namespaces acme

This creates the backup and an object in the Garage object store. To verify that the object was stored in
Garage, we used the following command:

Shell
velero backup get acme-fs-pod-backup-5

NAME STATUS ERRORS ~ WARNINGS CREATED EXPIRES STORAGE LOCATION SELECTOR
acme-fs-pod-backup-5 Completed @ 3 2025-08-22 10:23:14 +8200 CEST 29d default app=acme-fs-pod

The following is the command to actually look inside Garage:

Shell

aws s3 1ls s3://backup --recursive | grep acme-fs-pod-backup-5

2025-08-22 10:23:23 29
backups/acme-fs-pod-backup-5/acme-fs-pod-backup-5-csi-volumesnapshotclasses.jso
n.gz

2025-08-22 10:23:23 27
backups/acme-fs-pod-backup-5/acme-fs-pod-backup-5-csi-volumesnapshotcontents.js
on.gz

2025-08-22 10:23:23 29
backups/acme-fs-pod-backup-5/acme-fs-pod-backup-5-csi-volumesnapshots.json.gz
2025-08-22 10:23:23 27
backups/acme-fs-pod-backup-5/acme-fs-pod-backup-5-itemoperations.json.gz
2025-08-22 10:23:23 4634
backups/acme-fs-pod-backup-5/acme-fs-pod-backup-5-logs.gz

2025-08-22 10:23:23 860
backups/acme-fs-pod-backup-5/acme-fs-pod-backup-5-podvolumebackups.json.gz
2025-08-22 10:23:23 138
backups/acme-fs-pod-backup-5/acme-fs-pod-backup-5-resource-1ist.json.gz
2025-08-22 10:23:23 148
backups/acme-fs-pod-backup-5/acme-fs-pod-backup-5-results.gz

2025-08-22 10:23:23 368
backups/acme-fs-pod-backup-5/acme-fs-pod-backup-5-volumeinfo.json.gz
2025-08-22 10:23:23 29

backups/acme-fs-pod-backup-5/acme-fs-pod-backup-5-volumesnapshots.json.gz

© 2025 Lightbits Labs

@y lightbits

2025-08-22 10:23:23 3238
backups/acme-fs-pod-backup-5/acme-fs-pod-backup-5.tar.gz
2025-08-22 10:23:24 3257 backups/acme-fs-pod-backup-5/velero-backup.json

7. Restore Kubernetes with volumeMode
FileSystem

The following diagram illustrates what happens when we restore a backup with Velero from Garage to a
newly created PVC on external storage, and restore the pod mounted on that new PVC with a filesystem.

- . .
/;,\ Garage & vcLero -@- W5y lightbits

kubernetes

] D
L PN
restore process pﬂ:. pod and .
roud 2 e—— filesystem
object] 5

Restore: Filesystem volumeMode in Kubernetes

Y

Velero requests the information about the backup information from Garage.

Velero fetches the restore information from Garage.

Velero pushes the restore information to Kubernetes.

Kubernetes creates the PVC on Lightbits, creates the pod, and mounts the file system in the pod.
Kubernetes informs Velero that the job is done.

uhwbdbpR

Now we have our backup, and we need to do a restore. But before we do, we will first delete the pod and the
PVC. The PVC was located on Lightbits, but needed to be created correctly on Lightbits as well (remember
that the label was only called app=acme-fs-pod).

The following is the restore command we used:

Shell
velero restore create --from-backup acme-fs-pod-backup-5

To double-check that the PVC and pod are fully restored and up and running:

© 2025 Lightbits Labs

@y lightbits

Shell
kubectl get pvc,pod -n acme --show-labels
NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS VOLUMEATTRIBUTESCLASS AGE LABELS
persistentvolumeclaim/acme-fs-pvc Bound
pvc-751584fc-2204-4a29-82ac-bda2ebd6ad2c 14G1 RWO acme-sc
<unset> 106s
velero.io/backup-name=acme-fs-pod-backup-5,velero.io/restore-name=acme-fs-pod-b
ackup-5-20250822134022

NAME READY STATUS RESTARTS AGE LABELS
pod/acme-fs-pod 1/1 Running 0 106s

app=acme-fs-pod, velero.io/backup-name=acme-fs-pod-backup-5,velero.io/restore-na
me=acme-fs-pod-backup-5-20250822134022

When we look at the labels, it clearly shows that the backup and the store labels are added.

8. Back Up Kubernetes with volumeMode
Block

The following diagram illustrates what happens when we create a backup with Velero from a block device
that is externally attached with a PVC and running multiple pods on the same PVC, using an
externally-created CSI snapshot.

ah . .
’;} Garage @ VELERO -& wr lightbits

kubernetes

1
backup- < & backup process 5
object

A
o

“ ' w

4

Backup: Block volumeMode in Kubernetes

Velero requests a backup from Kubernetes.

Kubernetes requests a snapshot on Lightbits through CSI.

Lightbits creates the snapshot.

The snapshot is visible for Kubernetes.

Velero gets the information from Kubernetes.

Velero stores the backup information in the Garage s3 object store.

ok bR

For the block mode backup operations, the command is actually the same:

© 2025 Lightbits Labs

@y lightbits

Shell

velero backup create rwx-block-backup-7 --selector app=rwx-pods
--include-namespaces default

What happens now is that the PVC running on a Lightbits volume will have a snapshot created by the CSI
snapshot class from Lightbits. The PVC and the pods are backed up.

Verify the backup in Garage:

Shell

aws s3 1s s3://backup --recursive | grep rwx-block-backup-7

Output:

2025-08-26 11:53:53 426
backups/rwx-block-backup-7/rwx-block-backup-7-csi-volumesnapshotclasses. json.gz

2025-08-26 11:53:53 2396
backups/rwx-block-backup-7/rwx-block-backup-7-csi-volumesnapshotcontents.json.gz

2025-08-26 11:53:53 2088
backups/rwx-block-backup-7/rwx-block-backup-7-csi-volumesnapshots.json.gz

2025-08-26 11:53:53 977 backups/rwx-block-backup-7/rwx-block-backup-7-itemoperations.json.gz
2025-08-26 11:53:52 7611 backups/rwx-block-backup-7/rwx-block-backup-7-logs.gz

2025-08-26 11:53:53 29 backups/rwx-block-backup-7/rwx-block-backup-7-podvolumebackups.json.gz
2025-08-26 11:53:53 755 backups/rwx-block-backup-7/rwx-block-backup-7-resource-list.json.gz
2025-08-26 11:53:53 148 backups/rwx-block-backup-7/rwx-block-backup-7-results.gz

2025-08-26 11:53:55 464 backups/rwx-block-backup-7/rwx-block-backup-7-volumeinfo.json.gz
2025-08-26 11:53:53 29 backups/rwx-block-backup-7/rwx-block-backup-7-volumesnapshots.json.gz
2025-08-26 11:53:55 11908 backups/rwx-block-backup-7/rwx-block-backup-7.tar.gz

2025-08-26 11:53:55 3568 backups/rwx-block-backup-7/velero-backup.json

9. Restore Kubernetes with volumeMode
Block

The diagram below illustrates what happens when we restore a backup with Velero from Garage to a newly
created PVC on external storage, and restore the pods mounted on that new PVC with a filesystem by using
the previously created external snapshot.

© 2025 Lightbits Labs

@y lightbits

- l h b
/.} Garage & e ero %y lightbits
kubernetes
PR) D
e 2 | restorsproces . w ; “
object -

6

Restore: Block volumeMode in Kubernetes

Velero requests the information about the backup information from Garage.

Velero fetches the restore information from Garage.

Velero pushes the restore information to Kubernetes.

Kubernetes informs Lightbits to create a volume from the snapshot.

Lightbits creates the volume.

Kubernetes mounts the volume as a PVC, stores the pods on the PVC, and starts the pods.
Kubernetes informs Velero that the job is done.

NOo Uk WD

We deleted the pods and the PVC and restored them with this command. Take a look at the labels as well.

The labels before the restore:

Shell
kubectl get pvc,pods --show-labels
NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS VOLUMEATTRIBUTESCLASS AGE LABELS
persistentvolumeclaim/rwx-pvc Bound

pvc-0cbd428c-bcd2-46b9-b220-6a19c680c638 20Gi RWX example-sc
<unset> 76m app=rwx-pods

NAME READY STATUS RESTARTS AGE LABELS

pod/rwx-pod1 1/1 Running 0 76m app=rwx-pods

pod/rwx-pod2 1/1 Running © 76m app=rwx-pods

The restore command:

Shell

velero restore create --from-backup rwx-block-backup-7

Even though the PVC has been deleted, the snapshot remained in Lightbits. This snapshot is tightly
integrated with the restore capabilities of Velero. Without this snapshot, the restore will not function. The
restore creates the PVC and restores the pods.

© 2025 Lightbits Labs

@y lightbits

Take alook at the labels after restore:

Shell
kubectl get pvc,pods --show-labels
NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS VOLUMEATTRIBUTESCLASS AGE LABELS
persistentvolumeclaim/rwx-pvc Bound

pvc-e4e8b00e-7e46-4474-9be8-1e50ee77d399 20Gi RWX example-sc
<unset> 6s

app=rwx-pods, velero.io/backup-name=rwx-block-backup-7,velero.io/restore-name=rw
x-block-backup-7-20250822135203, velero.io/volume-snapshot-name=velero-rwx-pvc-d

1c86
NAME READY STATUS RESTARTS AGE LABELS
pod/rwx-pod1 0/1 ContainerCreating 0 6s

app=rwx-pods, velero.io/backup-name=rwx-block-backup-7,velero.io/restore-name=rw
x-block-backup-7-20250822135203

pod/rwx-pod2 0/1 ContainerCreating 0 6s

app=rwx-pods, velero.io/backup-name=rwx-block-backup-7,velero.io/restore-name=rw
x-block-backup-7-26250822135203

10. Restoring Just One Pod on the Shared
PVC

If one of the pods is having problems and needs to be restored, we can simply delete the pod called
rwx—-pod?2 and restored the pod with the same command:

Shell

velero restore create --from-backup rwx-block-backup-7

The results are as follows:

Shell

kubectl get pvc,pods --show-labels

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS VOLUMEATTRIBUTESCLASS AGE LABELS

© 2025 Lightbits Labs

@y lightbits

persistentvolumeclaim/rwx-pvc Bound

pvc-e4e8hb00e-7e46-4474-9be8-1e50ee77d399 20Gi RWX example-sc
<unset> 4m30s

app=rwx-pods, velero.io/backup-name=rwx-block-backup-7,velero.io/restore-name=rw
x-block-backup-7-20250822135203, velero.io/volume-snapshot-name=velero-rwx-pvc-d
1c86

NAME READY STATUS RESTARTS AGE LABELS

pod/rwx-pod1 1/1 Running 0 4m30s

app=rwx-pods, velero.io/backup-name=rwx-block-backup-7,velero.io/restore-name=rw
x-block-backup-7-20250822135203

pod/rwx-pod2 1/1 Running 0 3s

app=rwx-pods, velero.io/backup-name=rwx-block-backup-7,velero.io/restore-name=rw
x-block-backup-7-20250822135629

The rwx-podl stayed running and was not touched; however, rwx-pod2 was restored and started.
When you look closely at the labels, you can see that rwx—pod2 has a new time stamp; it was
20250822135203 andbecame 20250822135629. The timestamp for rwx—pod1 has not changed.

11. Conclusion

This comprehensive guide has demonstrated how the powerful combination of Velero, Garage, and Lightbits
transforms Kubernetes data protection from a complex chore into a seamless, automated process. By
integrating these leading technologies, organizations can establish a robust backup and restore solution that
not only safeguards critical application data, but also simplifies disaster recovery and ensures business
continuity.

The proven, step-by-step approach detailed in this paper highlights the synergy between Velero's intelligent
backup capabilities, Garage's scalable S3 object storage, and Lightbits' high-performance, efficient data
platform.

The result is an integrated solution that leverages external CSI snapshots for lightning-fast block-level
backups and restores, as well as efficient file-system backups. Whether you're recovering an entire
namespace or a single pod, the process is streamlined and reliable. The ease of configuration and the
demonstrated performance gains of this architecture empower IT teams to focus on innovation rather than
worrying about data loss.

By embracing this strategic data protection framework, businesses can confidently scale their Kubernetes
environments, knowing that their data is secure, accessible, and ready for any challenge that lies ahead.

© 2025 Lightbits Labs

@y lightbits

About Lightbits Labs

Lightbits Labs® (Lightbits) invented the NVMe over TCP protocol and offers best-in-class software-defined block
storage that enables data center infrastructure modernization for organizations building a private or public cloud. Built
from the ground up for low consistent latency, scalability, resiliency, and cost-efficiency, Lightbits software delivers the
best price/performance for real-time analytics, transactional, and Al/ML workloads. Lightbits Labs is backed by
enterprise technology leaders [Cisco Investments, Dell Technologies Capital, Intel Capital, Lenovo, and Micron] and is on

amission to deliver the fastest and most cost-efficient data storage for performance-sensitive workloads at scale.

@ www.lightbitslabs.com info@lightbitslabs.com
US Offices Israel Office
1830 The Alameda, 17 Atir Yeda Street,
San Jose, CA 95126, Kfar Saba 4464313,
USA Israel

The information in this document and any document referenced herein is provided for informational purposes only, is provided as is and
with all faults and cannot be understood as substituting for customized service and information that might be developed by Lightbits
Labs Itd for a particular user based upon that user’s particular environment. Reliance upon this document and any document referenced

herein is at the user’s own risk.

The software is provided "As is", without warranty of any kind, express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and non-infringement. In no event shall the contributors or copyright holders be liable
for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with
the software or the use or other dealings with the software.

Unauthorized copying or distributing of included software files, via any medium is strictly prohibited.

COPYRIGHT®© 2025 LIGHTBITS LABS LTD. - ALL RIGHTS RESERVED LBWP16/2025/06

© 2025 Lightbits Labs

http://www.lightbitslabs.com/

	
	
	Simplifying Backup, Recovery, and Continuous Business Resilience in Kubernetes
	Implementation guide for data protection in Kubernetes with Velero, Garage, and Lightbits
	
	
	
	1.​Introduction
	
	2.​Installing and Configuring the Garage Object Store
	2.1. Installing Docker
	2.2 Garage Container
	2.3 Garage Configuration
	2.4 Configuring the Garage Cluster
	2.5 Configuring the Credentials for the Backup Bucket
	2.6 Installing awscli

	
	
	3.​Installing and Configuring Velero
	
	4.​Pods and Their Associated PVC and Class
	
	
	5.​Required Changes for the Pod or PVC
	6.​Back Up Kubernetes with volumeMode FileSystem
	7. Restore Kubernetes with volumeMode FileSystem
	8. Back Up Kubernetes with volumeMode Block
	9. Restore Kubernetes with volumeMode Block
	10. Restoring Just One Pod on the Shared PVC
	11. Conclusion
	About Lightbits Labs

